Quantum annealing learning search for solving QUBO problems

被引:19
|
作者
Pastorello, Davide [1 ]
Blanzieri, Enrico [2 ]
机构
[1] Univ Trento, Dept Math, Trento Inst Fundamental Phys & Applicat, Via Sommar 14, I-38123 Povo, Trento, Italy
[2] Univ Trento, Dept Engn & Comp Sci, Via Sommar 9, I-38123 Povo, Trento, Italy
关键词
Quantum annealing; Optimization problems; Tabu search;
D O I
10.1007/s11128-019-2418-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a novel strategy to solve optimization problems within a hybrid quantum-classical scheme based on quantum annealing, with a particular focus on QUBO problems. The proposed algorithm implements an iterative structure where the representation of an objective function into the annealer architecture is learned and already visited solutions are penalized by a tabu-inspired search. The result is a heuristic search equipped with a learning mechanism to improve the encoding of the problem into the quantum architecture. We prove the convergence of the algorithm to a global optimum in the case of general QUBO problems. Our technique is an alternative to the direct reduction of a given optimization problem into the sparse annealer graph.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum annealing learning search for solving QUBO problems
    Davide Pastorello
    Enrico Blanzieri
    Quantum Information Processing, 2019, 18
  • [2] A Constraint Programming Approach for QUBO Solving and Quantum Annealing
    Codognet, Philippe
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THE ART, SCIENCE, AND ENGINEERING OF PROGRAMMING, PROGRAMMING COMPANION 2024, 2024, : 126 - 132
  • [3] Quantum Join Ordering by Splitting the Search Space of QUBO Problems
    Nayak, Nitin
    Winker, Tobias
    Çalıkyılmaz, Umut
    Groppe, Sven
    Groppe, Jinghua
    Datenbank-Spektrum, 2024, 24 (01) : 21 - 32
  • [4] Comparing QUBO models for quantum annealing: integer encodings for permutation problems
    Codognet, Philippe
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2025, 32 (01) : 18 - 37
  • [5] Solving QUBO problems with cP systems
    Ciencialova, Lucie
    Dinneen, Michael J.
    Nicolescu, Radu
    Cienciala, Ludek
    JOURNAL OF MEMBRANE COMPUTING, 2024, 6 (03) : 202 - 210
  • [6] Diverse Adaptive Bulk Search: a Framework for Solving QUBO Problems on Multiple GPUs
    Nakano, Koji
    Takafuji, Daisuke
    Ito, Yasuaki
    Yazane, Takashi
    Yano, Junko
    Ozaki, Shiro
    Katsuki, Ryota
    Mori, Rie
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW, 2023, : 314 - 325
  • [7] Effective QUBO modeling for solving linear systems on D-Wave quantum annealing device
    Leea, Hyunju
    Noh, Seungjoon
    Juna, Kyungtaek
    QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XIV, 2022, 12093
  • [8] Mean field approximation for solving QUBO problems
    Veszeli, Mate Tibor
    Vattay, Gabor
    PLOS ONE, 2022, 17 (08):
  • [9] Variational Amplitude Amplification for Solving QUBO Problems
    Koch, Daniel
    Cutugno, Massimiliano
    Patel, Saahil
    Wessing, Laura
    Alsing, Paul M.
    QUANTUM REPORTS, 2023, 5 (04): : 625 - 658
  • [10] QUANTUM ANNEALING LEARNING SEARCH IMPLEMENTATIONS
    Bonomi, Andrea
    De Min, Thomas
    Zardini, Enrico
    Blanzieri, Enrico
    Cavecchia, Valter
    Pastorello, Davide
    QUANTUM INFORMATION & COMPUTATION, 2022, 22 (3-4) : 181 - 208