A Smart Content-Based Image Retrieval Approach Based on Texture Feature and Slantlet Transform

被引:0
|
作者
Mhaibes, Hakeem Imad [1 ]
Shallal, Qahtan Makki [2 ]
Abood, May Hattim [3 ]
机构
[1] Middle Tech Univ, Kut Tech Inst, Baghdad, Iraq
[2] Management Tech Coll Basra, Basrah, Iraq
[3] Al Iraqia Univ, Coll Engn, Comp Engn Dept, Baghdad, Iraq
关键词
Image Processing; Information retrieval; CBIR; Slantlet Transform; Features extraction; Similarity measure;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the advancement of digital storing and capturing technologies in recent years, an image retrieval system has been widely known for Internet usage. Several image retrieval methods have been proposed to find similar images from a collection of digital images to a specified query image. Content-based image retrieval (CBIR) is a subfield of image retrieval techniques that extracts features and descriptions content such as color, texture, and shapes from a huge database of images. This paper proposes a two-tier image retrieval approach, a coarse matching phase, and a fine-matching phase. The first phase is used to extract spatial features, and the second phase extracts texture features based on the Slantlet transform. The findings of this study revealed that texture features are reliable and capable of producing excellent results and unsusceptible to low resolution and proved that the SLT-based texture feature is the perfect mate. The proposed method's experimental results have outperformed the benchmark results with precision gaps of 28.0 % for the Caltech 101 dataset. The results demonstrate that the two-tier strategy performed well with the successive phase (fine-matching) and the preceding phase (coarse matching) working hand in hand harmoniously.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [21] ReliefF Based Feature Selection In Content-Based Image Retrieval
    Sarrafzadeh, Abdolhossein
    Atabay, Habibollah Agh
    Pedram, Mir Mosen
    Shanbehzadeh, Jamshid
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 19 - 22
  • [22] A region-based fuzzy feature matching approach to content-based image retrieval
    Chen, YX
    Wang, JZ
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (09) : 1252 - 1267
  • [23] Content-based image retrieval based on a fuzzy approach
    Krishnapuram, R
    Medasani, S
    Jung, SH
    Choi, YS
    Balasubramaniam, R
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (10) : 1185 - 1199
  • [24] Isometric Feature Embedding for Content-Based Image Retrieval
    Muraki, Hayato
    Nishimaki, Kei
    Tobari, Shuya
    Oishi, Kenichi
    Iyatomi, Hitoshi
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,
  • [25] Feature Space Optimization for Content-Based Image Retrieval
    Avalhais, Letricia P. S.
    da Silva, Sergio F.
    Rodrigues, Jose F., Jr.
    Traina, Agma J. M.
    Traina, Caetano, Jr.
    APPLIED COMPUTING REVIEW, 2012, 12 (03): : 7 - 19
  • [26] Content-based image retrieval by feature point matching
    Hsu, CT
    Wu, YT
    Chen, ALP
    STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2001, 2001, 4315 : 39 - 49
  • [27] Color and spatial feature for content-based image retrieval
    Kankanhalli, MS
    Mehtre, BM
    Huang, HY
    PATTERN RECOGNITION LETTERS, 1999, 20 (01) : 109 - 118
  • [28] WEIGHTED FEATURE FUSION FOR CONTENT-BASED IMAGE RETRIEVAL
    Soysal, Omurhan A.
    Sumer, Emre
    FIRST INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2016, 0011
  • [29] Series feature aggregation for content-based image retrieval
    Zhang, Jun
    Ye, Lei
    COMPUTERS & ELECTRICAL ENGINEERING, 2010, 36 (04) : 691 - 701
  • [30] A new approach to content-based image retrieval
    You, J
    Cheung, KH
    Li, L
    Liu, J
    COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 2002, : 53 - 56