Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation

被引:10
|
作者
Kotyczka, Paul [1 ]
Lefevre, Laurent [2 ]
机构
[1] Tech Univ Munich, Dept Mech Engn, Chair Automat Control, Boltzmannstr 15, D-8570 Garching, Germany
[2] Univ Grenoble Alpes, LCIS, 50 Rue Barthelemy de Laffemas, F-26902 Valence, France
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 03期
关键词
Port-Hamiltonian systems; Dirac structures; discrete-time systems; geometric numerical integration; symplectic methods;
D O I
10.1016/j.ifacol.2018.06.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a family of discrete-time lossless input-state-output port-Hamiltonian systems based on numerical time integration with symplectic collocation schemes. For systems with non-zero input, symplecticity extends to the conservation of a discrete energy balance, based on which a discrete-time Dirac structure is defined. Using Gauss-Legendre collocation, the corresponding quadrature formula allows to quantify the discretization error for the supplied energy. On a linear example, backward error analysis and numerical experiments are performed in order to illustrate the accuracy of the resulting structure-preserving integration schemes. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [11] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [12] Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
    Moreschini, Alessio
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1999 - 2006
  • [13] Discrete port-Hamiltonian systems: mixed interconnections
    Talasila, Viswanath
    Clemente-Gallardo, J.
    van der Schaft, A. J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5656 - 5661
  • [14] Canonical interconnection of discrete linear port-Hamiltonian systems
    Aoues, Said
    Eberard, Damien
    Marquis-Favre, Wilfrid
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3166 - 3171
  • [15] Sampled data systems passivity and discrete port-Hamiltonian systems
    Stramigioli, S
    Secchi, C
    van der Schaft, AJ
    Fantuzzi, C
    IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (04) : 574 - 587
  • [16] Direct discrete-time control of port controlled Hamiltonian systems
    Yalcin, Yaprak
    Sumer, Leyla Goren
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2010, 18 (05) : 913 - 924
  • [17] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [18] Finite-time thermodynamics of port-Hamiltonian systems
    Delvenne, Jean-Charles
    Sandberg, Henrik
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 123 - 132
  • [19] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [20] On contraction of time-varying port-Hamiltonian systems
    Barabanov, Nikita
    Ortega, Romeo
    Pyrkin, Anton
    SYSTEMS & CONTROL LETTERS, 2019, 133