Tilings for Pisot beta numeration

被引:5
|
作者
Minervino, Milton [1 ]
Steiner, Wolfgang [2 ]
机构
[1] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[2] Univ Paris 07, CNRS UMR 7089, LIAFA, F-75205 Paris 13, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
基金
奥地利科学基金会;
关键词
Beta-expansion; Pisot number; Tiling; Rauzy fractal; ATOMIC SURFACES; SYSTEMS; SUBSTITUTIONS; EXPANSIONS; NUMBERS; COINCIDENCE; BOUNDARY; SHIFTS;
D O I
10.1016/j.indag.2014.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a (non-unit) Pisot number beta, several collections of tiles are associated with beta-numeration. This includes an aperiodic and a periodic one made of Rauzy fractals, a periodic one induced by the natural extension of the beta-transformation and a Euclidean one made of integral beta-tiles. We show that all these collections (except possibly the periodic translation of the central tile) are tilings if one of them is a tiling or, equivalently, the weak finiteness property (W) holds. We also obtain new results on rational numbers with purely periodic beta-expansions; in particular, we calculate gamma(beta) for all quadratic beta with beta(2) = alpha beta + b, gcd(a, b) = 1. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:745 / 773
页数:29
相关论文
共 50 条
  • [21] Beta Expansions for Regular Pisot Numbers
    Panju, Maysum
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (06)
  • [22] Dependance de systemes de numeration associes a des puissances d'un nombre de Pisot
    7 rue Condorcet, 02000 Laon, France
    不详
    Theor Comput Sci, 1-2 (65-79):
  • [23] Beta-expansions for cubic Pisot numbers
    Bassino, F
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 141 - 152
  • [24] FOURIER TRANSFORM OF RAUZY FRACTALS AND POINT SPECTRUM OF 1D PISOT INFLATION TILINGS
    Baake, Michael
    Grimm, Uwe
    DOCUMENTA MATHEMATICA, 2020, 25 : 2303 - 2337
  • [25] NUMERATION MODELS OF LAMBDA-BETA-CALCULUS
    KANDA, A
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1986, 32 (05): : 409 - 414
  • [26] Pisot numbers, primitive matrices and beta-conjugates
    Bertrand-Mathis, Anne
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (01): : 57 - 72
  • [27] Brane Tilings: The NSVZ Beta Function
    Hanany, Amihay
    CROSSING THE BOUNDARIES: GAUGE DYNAMICS AT STRONG COUPLING, 2010, : 215 - 225
  • [28] On purely periodic beta-expansions of Pisot numbers
    Sano, Y
    NAGOYA MATHEMATICAL JOURNAL, 2002, 166 : 183 - 207
  • [29] BRANE TILINGS: THE NSVZ BETA FUNCTION
    Hanany, Amihay
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (2-3): : 381 - 390
  • [30] Beta-expansion of 1 for quartic Pisot units
    Nertila Gjini
    Periodica Mathematica Hungarica, 2003, 47 (1-2) : 73 - 87