Tilings for Pisot beta numeration

被引:5
|
作者
Minervino, Milton [1 ]
Steiner, Wolfgang [2 ]
机构
[1] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[2] Univ Paris 07, CNRS UMR 7089, LIAFA, F-75205 Paris 13, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
基金
奥地利科学基金会;
关键词
Beta-expansion; Pisot number; Tiling; Rauzy fractal; ATOMIC SURFACES; SYSTEMS; SUBSTITUTIONS; EXPANSIONS; NUMBERS; COINCIDENCE; BOUNDARY; SHIFTS;
D O I
10.1016/j.indag.2014.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a (non-unit) Pisot number beta, several collections of tiles are associated with beta-numeration. This includes an aperiodic and a periodic one made of Rauzy fractals, a periodic one induced by the natural extension of the beta-transformation and a Euclidean one made of integral beta-tiles. We show that all these collections (except possibly the periodic translation of the central tile) are tilings if one of them is a tiling or, equivalently, the weak finiteness property (W) holds. We also obtain new results on rational numbers with purely periodic beta-expansions; in particular, we calculate gamma(beta) for all quadratic beta with beta(2) = alpha beta + b, gcd(a, b) = 1. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:745 / 773
页数:29
相关论文
共 50 条