Xerxes: Distributed Load Generator for Cloud-scale Experimentation

被引:3
|
作者
Kesavan, Mukil [1 ]
Gavrilovska, Ada [1 ]
Schwan, Karsten [1 ]
机构
[1] Georgia Inst Technol, CERCS, Atlanta, GA 30332 USA
关键词
Cloud computing; Virtualization; Benchmarks; Performance;
D O I
10.1109/OCS.2012.34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the growing acceptance of cloud computing as a viable computing paradigm, a number of research and real-life dynamic cloud-scale resource allocation and management systems have been developed over the last few years. An important problem facing system developers is the evaluation of such systems at scale. In this paper we present the design of a distributed load generation framework, Xerxes, that can generate appropriate resource load patterns across varying datacenter scales, thereby representing various cloud load scenarios. Toward this end, we first characterize the resource consumption of four distributed cloud applications that represent some of the most widely used classes of applications in the cloud. We then demonstrate how, using Xerxes, these patterns can be directly replayed at scale, potentially even beyond what is easily achievable through application reconfiguration. Furthermore, Xerxes allows for additional parameter manipulation and exploration of a wide range of load scenarios. Finally, we demonstrate the ability to use Xerxes with publicly available datacenter traces which can be replayed across datacenters with different configurations. Our experiments are conducted on a 700-node 2800-core private cloud datacenter, virtualized with the VMware vSphere virtualization stack. The benefits of such a microbenchmark for cloud-scale experimentation include: (i) decoupling load scaling from application logic, (ii) reslience to faults and failures, since applications tend to crash altogether when some components fail, particularly at scales, and (iii) ease of testing and the ability to understand system behavior in a variety of actual or anticipated scenarios.
引用
收藏
页码:20 / 24
页数:5
相关论文
共 50 条
  • [31] SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres
    Sriram, Ilango
    CLOUD COMPUTING, PROCEEDINGS, 2009, 5931 : 381 - 392
  • [32] Explicit cloud-scale models for operational forecasts: A note of caution
    Elmore, KL
    Stensrud, DJ
    Crawford, KC
    WEATHER AND FORECASTING, 2002, 17 (04) : 873 - 884
  • [33] Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies
    Sun, Jiayi
    Leroy, Adam K.
    Schruba, Andreas
    Rosolowsky, Erik
    Hughes, Annie
    Kruijssen, J. M. Diederik
    Meidt, Sharon
    Schinnerer, Eva
    Blanc, Guillermo A.
    Bigiel, Frank
    Bolatto, Alberto D.
    Chevance, Melanie
    Groves, Brent
    Herrera, Cinthya N.
    Hygate, Alexander P. S.
    Pety, Jerome
    Querejeta, Miguel
    Usero, Antonio
    Utomo, Dyas
    ASTROPHYSICAL JOURNAL, 2018, 860 (02):
  • [34] URSA: Hybrid Block Storage for Cloud-Scale Virtual Disks
    Li, Huiba
    Zhang, Yiming
    Li, Dongsheng
    Zhang, Zhiming
    Liu, Shengyun
    Huang, Peng
    Qin, Zheng
    Chen, Kai
    Xiong, Yongqiang
    PROCEEDINGS OF THE FOURTEENTH EUROSYS CONFERENCE 2019 (EUROSYS '19), 2019,
  • [35] Diagnosis of cirrus cloud occurrence using large-scale analysis data and a cloud-scale model
    Cautenet, G
    Gbe, D
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1996, 14 (07): : 753 - 766
  • [36] Cloud-scale model intercomparison of chemical constituent transport in deep convection
    Barth, M. C.
    Kim, S.-W.
    Wang, C.
    Pickering, K. E.
    Ott, L. E.
    Stenchikov, G.
    Leriche, M.
    Cautenet, S.
    Pinty, J.-P.
    Barthe, Ch.
    Mari, C.
    Helsdon, J. H.
    Farley, R. D.
    Fridlind, A. M.
    Ackerman, A. S.
    Spiridonov, V.
    Telenta, B.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (18) : 4709 - 4731
  • [37] The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds
    Kassianov, E
    Ackerman, T
    Kollias, P
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02): : 211 - 226
  • [38] A Configurable Cloud-Scale DNN Processor for Real-Time AI
    Fowers, Jeremy
    Ovtcharov, Kalin
    Papamichael, Michael
    Massengill, Todd
    Liu, Ming
    Lo, Daniel
    Alkalay, Shlomi
    Haselman, Michael
    Adams, Logan
    Ghandi, Mahdi
    Heil, Stephen
    Patel, Prerak
    Sapek, Adam
    Weisz, Gabriel
    Woods, Lisa
    Lanka, Sitaram
    Reinhardt, Steven K.
    Caulfield, Adrian M.
    Chung, Eric S.
    Burger, Doug
    2018 ACM/IEEE 45TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2018, : 1 - 14
  • [39] QUEST: Search-driven Management of Cloud-Scale Data Centers
    Maiti, Atreyee
    Singh, Rahul
    Chandra, Ramesh
    Shukla, Himanshu
    2017 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E 2017), 2017, : 175 - 182
  • [40] A THREE-DIMENSIONAL CLOUD-SCALE MODEL SUITABLE FOR COMPRESSIBLE ATMOSPHERE
    许焕斌
    王思微
    Acta Meteorologica Sinica, 1990, (04) : 503 - 512