One-class SVM for learning in image retrieval

被引:0
|
作者
Chen, YQ [1 ]
Zhou, XS [1 ]
Huang, TS [1 ]
机构
[1] Univ Illinois, Beckman Inst, Champaign, IL 61820 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Relevance feedback schemes using linear/quadratic estimators have been applied in content-based image retrieval to significantly improve retrieval performance. One major difficulty in relevance feedback is to estimate the support of target images in high dimensional feature space with a relatively small number of training samples. In this paper, we develop a novel scheme based on one-class SVM, which fits a tight hyper-sphere in the nonlinearly transformed feature space to include most of the target images based on the positive examples. The use of kernel provides us an elegant way to deal with nonlinearity in the distribution of the target images, while the regularization term in SVM provides good generalization ability. To validate the efficacy of the proposed approach, we test it on both synthesized data and real-world images. Promising results are achieved in both cases.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 50 条
  • [21] One-Class Risk Estimation for One-Class Hyperspectral Image Classification
    Zhao, Hengwei
    Zhong, Yanfei
    Wang, Xinyu
    Shu, Hong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] Automatic Particle Detection and Counting by One-Class SVM from Microscope Image
    Kuba, Hinata
    Hotta, Kazuhiro
    Takahashi, Haruhisa
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II, 2009, 5507 : 361 - 368
  • [23] Improving image retrieval performance by inter-query learning with one-class support vector machines
    Iker Gondra
    Douglas R. Heisterkamp
    Jing Peng
    Neural Computing & Applications, 2004, 13 : 130 - 139
  • [24] Improving image retrieval performance by inter-query learning with one-class support vector machines
    Gondra, I
    Heisterkamp, DR
    Peng, J
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (02): : 130 - 139
  • [25] Improving one-class SVM for anomaly detection
    Li, KL
    Huang, HK
    Tian, SF
    Xu, W
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3077 - 3081
  • [26] One-Class SVM Assisted Accurate Tracking
    Fu, Keren
    Gong, Chen
    Qiao, Yu
    Yang, Jie
    Gu, Irene
    2012 SIXTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), 2012,
  • [27] Comparison of one-class SVM and two-class SVM for fold recognition
    Senf, Alexander
    Chen, Xue-wen
    Zhang, Anne
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 140 - 149
  • [28] A NEW ONE-CLASS SVM FOR ANOMALY DETECTION
    Chen, Yuting
    Qian, Jing
    Saligrama, Ventatesh
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3567 - 3571
  • [29] Robust one-class SVM for fault detection
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    Zhou, Junwu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 15 - 25
  • [30] One-Class SVM for landmine detection and discrimination
    Tbarki, Khaoula
    Ben Said, Salma
    Ksantini, Riadh
    Lachiri, Zied
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 309 - 313