A Van Kampen type theorem for coincidences

被引:7
|
作者
Borsari, LD [1 ]
Gonçalves, DL [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, Dept Matemat, BR-05389970 Sao Paulo, Brazil
关键词
coincidence Nielsen numbers; index; obstruction; complexes;
D O I
10.1016/S0166-8641(98)00115-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Nielsen coincidence theory is well understood for a pair of maps (f, g) : M-n --> N-n where M and N are compact manifolds of the same dimension greater than two. We consider coincidence theory of ct pair (f, g) : K --> N-n, where the complex K is the union of two compact manifolds of the same dimension as Nn. We define a number N(f, g : K-1, K-2) which is a homotopy invariant with respect to the maps. This number is certainly a lower bound for the number of coincidence points, and we prove a minimizing theorem with respect to this number. Finally, we consider the case where the target is a Jiang space and we obtain a nicer description of N(f, g : K-1, K-2) in terms of the Nielsen coincidence numbers of the maps restricted to the subspaces K-1, K-2. (C) 2000 Elsevier Science B.V. AU rights reserved.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [41] Coincidences are not accidental: a theorem
    Department of Computer Science, University of Texas at El Paso, El Paso, TX, United States
    不详
    Cybern Syst, 5 (429-440):
  • [42] BEING VAN KAMPEN IS A UNIVERSAL PROPERTY
    Heindel, Tobias
    Sobocinski, Pawel
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (01)
  • [43] Nicolaas Godfried van Kampen Obituary
    Oppenheim, Irwin
    PHYSICS TODAY, 2014, 67 (03) : 66 - 66
  • [44] Van Kampen Squares for Graph Transformation
    Koenig, Harald
    Loewe, Michael
    Schulz, Christoph
    Wolter, Uwe
    GRAPH TRANSFORMATION, 2014, 8571 : 222 - 236
  • [45] Coincidences are not accidental: A theorem
    Kreinovich, V
    CYBERNETICS AND SYSTEMS, 1999, 30 (05) : 429 - 440
  • [46] Claire van Kampen's 'Macbeth'
    Barlow, J
    TEMPO, 2002, 221 : 48 - 49
  • [47] Variations on Van Kampen’s Method
    David Bessis
    Journal of Mathematical Sciences, 2005, 128 (4) : 3142 - 3150
  • [48] The van Kampen obstruction and its relatives
    Sergey A. Melikhov
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 142 - 176
  • [49] Higher minors and van Kampen's obstruction
    Nevo, Eran
    MATHEMATICA SCANDINAVICA, 2007, 101 (02) : 161 - 176
  • [50] On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result
    Xavier Goaoc
    Isaac Mabillard
    Pavel Paták
    Zuzana Patáková
    Martin Tancer
    Uli Wagner
    Israel Journal of Mathematics, 2017, 222 : 841 - 866