Solving the electrical impedance tomography inverse problem for logarithmic conductivity: Numerical sensitivity

被引:2
|
作者
Pellegrini, Sergio P. [1 ]
Trigo, Flavio C. [1 ]
Lima, Raul G. [1 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
关键词
Inverse problems; Electrical impedance tomography; Solution space parametrization; RECONSTRUCTION; EIT;
D O I
10.1108/COMPEL-11-2016-0501
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PurposeIn the context of electrical impedance tomography (EIT), this paper aims to evaluate limitations of estimating conductivity or resistivity, as well as the improvements achieved with the use of an alternate description of the solution space, the logarithmic conductivity. Design/methodology/approachA quantitative analysis is performed, solving the inverse EIT problem by using the Gauss-Newton and non-linear conjugate gradient methods for a numerical phantom of 15 elements. A property of symmetry is studied for the direct EIT problem for a phantom of 385,601 elements. FindingsSolving the inverse EIT problem in logarithmic conductivity is more robust to the initial guess, as solutions are kept within physical bounds (conductivity positiveness). Also, convergence is faster and less dependent on the final values of the estimates. Research limitations/implicationsLogarithmic conductivity provides an advantageous description of the solution space for the EIT inverse problem. Similar estimation problems might be subject to analogous conclusions. Originality/valueThis study provides a novel analysis, quantitatively comparing the effect of different variables to solve the inverse EIT problem.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [21] Using Topological Algorithms to Solve Inverse Problem in Electrical Impedance Tomography
    Tchorzewski, Pawel
    Rymarczyk, Tomasz
    Sikora, Jan
    INTERNATIONAL INTERDISCIPLINARY PHD WORKSHOP 2016, 2016, : 46 - 50
  • [22] The boundary element method in the forward and inverse problem of electrical impedance tomography
    de Munck, JC
    Faes, TJC
    Heethaar, RM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (06) : 792 - 800
  • [23] A pre-iteration method for the inverse problem in electrical impedance tomography
    Wang, HX
    Wang, C
    Yin, WL
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (04) : 1093 - 1096
  • [24] Algorithm for solving the Electrical Impedance Tomography forward problem by the modification method
    Sushko, I. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2011, (47): : 165 - 175
  • [25] THE SENSITIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Rybin, A. I.
    Gaydayenko, E. V.
    Sushko, I. O.
    Gamanenko, A. I.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2013, (55): : 107 - 117
  • [26] Simulation of an inverse problem in electrical impedance tomography using resistance electrical network analogues
    Abdullah, MZ
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1999, 36 (04) : 311 - 324
  • [27] ELECTRICAL CONDUCTIVITY INVERSE PROBLEM
    PARKER, RL
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (06): : 479 - &
  • [28] A Numerical Method for Determining the Inhomogeneity Boundary in the Electrical Impedance Tomography Problem in the Case of Piecewise-Constant Conductivity
    Gavrilov S.V.
    Mathematical Models and Computer Simulations, 2021, 13 (4) : 579 - 585
  • [29] On regularity of the logarithmic forward map of electrical impedance tomography
    Garde, Henrik
    Hyvonen, Nuutti
    Kuutela, Topi
    SIAM Journal on Mathematical Analysis, 2020, 52 (01): : 197 - 220
  • [30] ON REGULARITY OF THE LOGARITHMIC FORWARD MAP OF ELECTRICAL IMPEDANCE TOMOGRAPHY
    Garde, Henrik
    Hyvonen, Nuutti
    Kuutela, Topi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 197 - 220