Chemical kinetics of hexamethyldisiloxane pyrolysis: A ReaxFF molecular dynamics simulation study

被引:4
|
作者
Chen, Yugong [1 ]
Chen, Hao [1 ]
Wang, Jianxiang [1 ]
Huang, Yaosong [1 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
hexamethyldisiloxane; molecular dynamics simulation; pyrolysis; reaction rate constant; ReaxFF; FUSED-SILICA GLASS; THERMAL-DECOMPOSITION;
D O I
10.1002/kin.21570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pyrolysis kinetics of hexamethyldisiloxane (HMDSO) at various temperatures was studied using the reactive force field (ReaxFF) molecular dynamics simulations. Reaction rate constants and the main pyrolysis pathways were explored at the initial decomposition stage of HMDSO and intermediates decomposition stage. The activation energy and pre-exponential factor describing the reaction rate constants were obtained and further validated by experimental data and DFT theoretical calculations. The formation of C5H15OSi2 fragment by Si-C bond dissociation was dominant at the initial decomposition stage of HMDSO at the simulation temperatures of 2500-4000 K. The subsequent reaction pathways involved the formation of C5H14OSi2 and C4H11OSi2. After that, the pathways were different for 2500 and 3000 K. At 4000 K, small silicon-containing fragments were formed, including CH3Si, CH4Si, and C3H9Si, etc. The simulations also revealed that the major hydrocarbons generated during HMDSO pyrolysis were CH3 and CH4. Also, CH4 formation was more important in the end of HMDSO pyrolysis when simulation temperature was over 3500 K.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条
  • [21] ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel
    Lele, Aditya
    Kwon, Hyunguk
    Ganeshan, Karthik
    Xuan, Yuan
    van Duin, Adri C. T.
    FUEL, 2021, 297
  • [22] Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation
    Wang, Yinbin
    Yao, Senjun
    Wang, Wei
    Qiu, Chenglong
    Zhang, Jing
    Deng, Shengwei
    Dong, Hong
    Wu, Chuan
    Wang, Jianguo
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 94 - 102
  • [23] Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation
    Yinbin Wang
    Senjun Yao
    Wei Wang
    Chenglong Qiu
    Jing Zhang
    Shengwei Deng
    Hong Dong
    Chuan Wu
    Jianguo Wang
    Chinese Journal of Chemical Engineering, 2021, 31 (03) : 94 - 102
  • [24] Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF
    Zhang X.-X.
    Lü X.-X.
    Xiao M.-H.
    Lin R.-Y.
    Zhou Z.-J.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2020, 48 (09): : 1035 - 1046
  • [25] Atomistic insights into the pyrolysis characteristics of cis-pinane by ReaxFF molecular dynamics simulation
    Liu, Yalan
    Zhang, He
    Shao, Youxiang
    CHEMICAL PHYSICS, 2025, 593
  • [26] Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation
    Wang Haijun
    Feng Yanhui
    Zhang Xinxin
    Lin Wei
    Zhao Yongliang
    FUEL, 2015, 145 : 241 - 248
  • [27] A detailed reaction mechanism for hexamethyldisiloxane combustion via experiments and ReaxFF molecular dynamics simulations
    Huang, Yaosong
    Chen, Hao
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2024, 56 (03) : 131 - 149
  • [28] Molecular Dynamics Simulations Study of Brown Coal Pyrolysis Using ReaxFF Method
    Hong, Di-kun
    Shu, Hong-kuan
    Guo, Xin
    Zheng, Chu-guang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 59 - 67
  • [29] Pyrolysis of bio-derived dioxolane fuels: A ReaxFF molecular dynamics study
    Kwon, Hyunguk
    Xuan, Yuan
    FUEL, 2021, 306
  • [30] Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study
    Ashraf, Chowdhury
    Shabnam, Sharmin
    Jain, Abhishek
    Xuan, Yuan
    van Duin, Adri C. T.
    FUEL, 2019, 235 : 194 - 207