Tests for the equality of conditional variance functions in nonparametric regression

被引:8
|
作者
Carlos Pardo-Fernandez, Juan [1 ]
Dolores Jimenez-Gamero, Maria [2 ]
El Ghouch, Anouar [3 ]
机构
[1] Univ Vigo, Dept Stat & Operat Res, Vigo 36310, Spain
[2] Univ Seville, Fac Matemat, Dept Stat & Operat Res, E-41012 Seville, Spain
[3] Catholic Univ Louvain, Inst Stat Biostat & Actuarial Sci, B-1348 Louvain La Neuve, Belgium
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 02期
关键词
Asymptotics; bootstrap; comparison of curves; empirical characteristic function; empirical distribution function; kernel smoothing; local alternatives; regression residuals; CURVES; HOMOSCEDASTICITY;
D O I
10.1214/15-EJS1058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we are interested in checking whether the conditional variances are equal in k >= 2 location-scale regression models. Our procedure is fully nonparametric and is based on the comparison of the error distributions under the null hypothesis of equality of variances and without making use of this null hypothesis. We propose four test statistics based on empirical distribution functions (Kolmogorov-Smirnov and Cramer-von Mises type test statistics) and two test statistics based on empirical characteristic functions. The limiting distributions of these six test statistics are established under the null hypothesis and under local alternatives. We show how to approximate the critical values using either an estimated version of the asymptotic null distribution or a bootstrap procedure. Simulation studies are conducted to assess the finite sample performance of the proposed tests. We also apply our tests to data on household expenditures.
引用
收藏
页码:1826 / 1851
页数:26
相关论文
共 50 条
  • [41] Cautions in testing variance equality with randomization tests
    Hayes, AF
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 59 (01) : 25 - 31
  • [42] Conditional variance estimation in heteroscedastic regression models
    Chen, W-Hung
    Cheng, Ming-Yen
    Peng, Liang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 236 - 245
  • [43] Conditional variance estimation via nonparametric generalized additive models
    Kyusang Yu
    Journal of the Korean Statistical Society, 2019, 48 : 287 - 296
  • [44] Conditional variance estimation via nonparametric generalized additive models
    Yu, Kyusang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 287 - 296
  • [45] Effect of mean on variance function estimation in nonparametric regression
    Wang, Lie
    Brown, Lawrence D.
    Cai, T. Tony
    Levine, Michael
    ANNALS OF STATISTICS, 2008, 36 (02): : 646 - 664
  • [46] Nonparametric regression under dependent errors with infinite variance
    Liang Peng
    Qiwei Yao
    Annals of the Institute of Statistical Mathematics, 2004, 56 : 73 - 86
  • [47] ADAPTIVE VARIANCE FUNCTION ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Cai, T. Tony
    Wang, Lie
    ANNALS OF STATISTICS, 2008, 36 (05): : 2025 - 2054
  • [48] Estimation and inference for error variance in bivariate nonparametric regression
    Bock, M.
    Bowman, A. W.
    Ismail, B.
    STATISTICS AND COMPUTING, 2007, 17 (01) : 39 - 47
  • [49] A model specification test for the variance function in nonparametric regression
    Carlos Pardo-Fernandez, Juan
    Dolores Jimenez-Gamero, M.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 387 - 410
  • [50] OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN
    Shen, Yandi
    Gao, Chao
    Witten, Daniela
    Han, Fang
    ANNALS OF STATISTICS, 2020, 48 (06): : 3589 - 3618