A lower bound on the least signless Laplacian eigenvalue of a graph

被引:7
|
作者
Guo, Shu-Guang [1 ]
Chen, Yong-Gao [2 ,3 ]
Yu, Guanglong [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Graph; Signless Laplacian; Least eigenvalue;
D O I
10.1016/j.laa.2014.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices and m edges. Lima et al. (2011) in [2] posed the following conjecture on the least eigenvalue q(n)(G) of the signless Laplacian of G: q(n)(G) >= 2m/(n - 1) - n + 2. In this paper we prove a stronger result: For any graph with n vertices and m edges, we have q(n)(G) >= 2m/(n - 2) - n + 1(n >= 6). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [31] Multiplicity of signless Laplacian eigenvalue 2 of a connected graph with a perfect matching
    Zhao, Jinxing
    Yu, Xiaoxiang
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 480 - 486
  • [32] On the second largest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1215 - 1222
  • [33] On the smallest signless Laplacian eigenvalue of graphs
    Oboudi, Mohammad Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 637 : 138 - 156
  • [34] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [35] Bound on the least eigenvalue of a graph with cut vertices
    Zhu, Bao-Xuan
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05): : 993 - 1001
  • [36] Signless Laplacian spectrum of a graph
    Ghodrati, Amir Hossein
    Hosseinzadeh, Mohammad Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 257 - 267
  • [37] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, Shariefuddin
    Khan, Saleem
    arXiv, 2022,
  • [38] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Greaves, Gary R. W.
    Munemasa, Akihiro
    Peng, Anni
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1509 - 1519
  • [39] On the distance signless Laplacian of a graph
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06): : 1113 - 1123
  • [40] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Gary R. W. Greaves
    Akihiro Munemasa
    Anni Peng
    Graphs and Combinatorics, 2017, 33 : 1509 - 1519