A Partial-Volume Correction for Quantitative Spectral X-Ray Radiography

被引:2
|
作者
Gillis, Wesley Collins [1 ]
Gilbert, Andrew James [2 ]
Pazdernik, Karl [2 ]
Erickson, Anna [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn & Med Phys Programs, Atlanta, GA 30332 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
Detectors; Radiography; Attenuation; X-ray imaging; Prediction algorithms; Uranium; Material discrimination; nonlinear least-squares; partial-volume effect; spectral X-ray radiography; PIXEL READOUT CHIP; DETECTOR ARRAYS; WORKING;
D O I
10.1109/TNS.2020.3028009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The technique of spectral radiography has been shown to accurately discriminate a material's elemental composition by using known X-ray physics. In previous work, we presented a system for determining the total compositional mass of UO2 powder. This is achieved with a state-of-the-art pixelated spectrometer and a high-fidelity physical model. Similar to other radiographs, the system suffers from partial-volume attenuation where the sample projection onto a pixel is only a fraction of the pixel area, leaving the rest unattenuated. This study updates the physical model to account for fractional area which challenges the existing algorithm. We present how this update is made and explore approaches to stabilize the algorithm through parameter scaling, constrained optimization, and hyperparameter selection. We applied the updated algorithm to calculate the total uranium and oxygen mass of UO2 powder simulations. The average relative error on total uranium mass was reduced from 1.4% to 0.068% and on total oxygen mass from 122.2% to 4.2%.
引用
收藏
页码:2321 / 2328
页数:8
相关论文
共 50 条
  • [1] Quantitative uranium elemental reconstruction using spectral x-ray radiography
    Gilbert, Andrew J.
    McDonald, Benjamin S.
    Kasparek, Dustin M.
    Wittman, Richard S.
    Gillis, Wesley C.
    Clark, Richard A.
    Brayfindley, Eva
    Sweet, Lucas E.
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (02)
  • [2] Partial-Volume Effect and a Partial-Volume Correction for the NanoPET/CT™ Preclinical PET/CT Scanner
    Szanda, Istvan
    Livieratos, Lefteris
    Patay, Gergely
    Tsoumpas, Charalampos
    Sunassee, Kavitha
    Mullen, Gregory E.
    Nemeth, Gabor
    Major, Peter
    Marsden, Paul K.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3605 - 3609
  • [3] Lesion contrast recovery for partial-volume averaging: Quantitative correction or qualitative enhancement?
    Robert A. deKemp
    R. Glenn Wells
    Rob S. B. Beanlands
    Journal of Nuclear Cardiology, 2018, 25 : 1757 - 1759
  • [4] Lesion contrast recovery for partial-volume averaging: Quantitative correction or qualitative enhancement?
    dekemp, Robert A.
    Wells, R. Glenn
    Beanlands, Rob S. B.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (05) : 1757 - 1759
  • [5] Importance of partial-volume correction in brain PET studies
    Fazio, F
    Perani, D
    JOURNAL OF NUCLEAR MEDICINE, 2000, 41 (11) : 1849 - 1850
  • [6] QUANTITATIVE X-RAY SPECTRAL MICROANALYSIS
    ILIN, NP
    LOSEVA, LE
    INDUSTRIAL LABORATORY, 1966, 32 (05): : 664 - &
  • [7] Spectral Differential Phase Contrast X-Ray Radiography
    Mechlem, Korbinian
    Sellerer, Thorsten
    Viermetz, Manuel
    Herzen, Julia
    Pfeiffer, Franz
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) : 578 - 587
  • [8] BAYESIAN ABEL INVERSION IN QUANTITATIVE X-RAY RADIOGRAPHY
    Howard, Marylesa
    Fowler, Michael
    Luttman, Aaron
    Mitchell, Stephen E.
    Hock, Margaret C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : B396 - B413
  • [9] SPECTRAL DISTRIBUTION OF X-RAY TUBES FOR QUANTITATIVE X-RAY FLUORESCENCE ANALYSIS
    GILFRICH, JV
    BIRKS, LS
    ANALYTICAL CHEMISTRY, 1968, 40 (07) : 1077 - &
  • [10] X-ray radiography
    Ooka, Norikazu
    Ishii, Toshimitsu
    Keikinzoku Yosetsu/Journal of Light Metal Welding and Construction, 1998, 36 (04):