A Novel Wireless Network Intrusion Detection Method Based on Adaptive Synthetic Sampling and an Improved Convolutional Neural Network

被引:38
|
作者
Hu, Zhiquan [1 ]
Wang, Liejun [1 ,2 ]
Qi, Lei [1 ]
Li, Yongming [1 ]
Yang, Wenzhong [1 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Key Lab Signal Detect & Proc, Xinjiang 830046, Xinjiang Uygur, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Feature extraction; Intrusion detection; Classification algorithms; Task analysis; Redundancy; Machine learning algorithms; Data models; adaptive synthetic sampling; AS-CNN; NSL-KDD; FEATURE-SELECTION; DETECTION SYSTEM;
D O I
10.1109/ACCESS.2020.3034015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The diversity of network attacks poses severe challenges to intrusion detection systems (IDSs). Traditional attack recognition methods usually adopt mining data associations to identify anomalies, which has the disadvantages of a high false alarm rate (FAR), low recognition accuracy (ACC) and poor generalization ability. To ameliorate the comprehensive capabilities of IDS and strengthen network security, we propose a novel intrusion detection method based on the adaptive synthetic sampling (ADASYN) algorithm and an improved convolutional neural network (CNN). First, we use the ADASYN method to balance the sample distribution, which can effectively prevent the model from being sensitive to large samples and ignore small samples. Second, the improved CNN is based on the split convolution module (SPC-CNN), which can increase the diversity of features and eliminate the impact of interchannel information redundancy on model training. Then, an AS-CNN model mixed with ADASYN and SPC-CNN is used for intrusion detection tasks. Finally, the standard NSL-KDD dataset is selected to test AS-CNN. The simulation illustrates that the accuracy is 4.60% and 2.79% higher than that of the traditional CNN and RNN models, and the detection rate (DR) increased by 11.34% and 10.27%, respectively. Additionally, the FAR decreased by 15.58% and 14.57%, respectively, compared with the two models.
引用
收藏
页码:195741 / 195751
页数:11
相关论文
共 50 条
  • [21] Animal Intrusion Detection Based on Convolutional Neural Network
    Xue, Wenling
    Jiang, Ting
    Shi, Jiong
    2017 17TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2017,
  • [22] A wireless intrusion detection method based on dynamic growing neural network
    Liu, Yanheng
    Tian, Daxin
    Li, Bin
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 2, 2006, : 611 - +
  • [23] An Improved Network Intrusion Detection Based on Deep Neural Network
    Zhang, Lin
    Li, Meng
    Wang, Xiaoming
    Huang, Yan
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019), 2019, 563
  • [24] A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional Neural Network
    Wang, Xiaowei
    Yin, Shoulin
    Li, Hang
    Wang, Jiachi
    Teng, Lin
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2020, 27 (04) : 503 - 517
  • [25] A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional Neural Network
    Xiaowei Wang
    Shoulin Yin
    Hang Li
    Jiachi Wang
    Lin Teng
    International Journal of Wireless Information Networks, 2020, 27 : 503 - 517
  • [26] Applying Convolutional Neural Network for Network Intrusion Detection
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1222 - 1228
  • [27] Intrusion Detection Method based on Improved BP Neural Network Research
    Zhu YuanZhong
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2016, 10 (05): : 193 - 202
  • [28] Wireless Sensor Network for Community Intrusion Detection System Based on Improved Genetic Algorithm Neural Network
    Gao, Meijuan
    Tian, Jingwen
    2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, PROCEEDINGS, 2009, : 199 - 202
  • [29] An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic
    Zhang, Xiaoxuan
    Ran, Jing
    Mi, Jize
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 456 - 460
  • [30] Face detection and recognition method based on improved convolutional neural network
    Lu Z.
    Zhou C.
    Xuyang
    Zhang W.
    International Journal of Circuits, Systems and Signal Processing, 2021, 15 : 774 - 781