On short time existence of Lagrangian mean curvature flow

被引:8
|
作者
Begley, Tom [1 ]
Moore, Kim [1 ]
机构
[1] Ctr Math Sci, CCA, Wilberforce Rd, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
SINGULARITIES; SUBMANIFOLDS; UNIQUENESS;
D O I
10.1007/s00208-016-1420-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a short time existence problem motivated by a conjecture of Joyce (Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. arXiv:1401.4949,2014). Specifically we prove that given any compact Lagrangian L subset of C(n)with a finite number of singularities, each asymptotic to a pair of non-area-minimising, transversally intersecting Lagrangian planes, there is a smooth Lagrangian mean curvature flow existing for some positive time, that attains L as t SE arrow 0 as varifolds, and smoothly locally away from the singularities.
引用
收藏
页码:1473 / 1515
页数:43
相关论文
共 50 条
  • [21] Mean curvature flow of monotone Lagrangian submanifolds
    Groh, K.
    Schwarz, M.
    Smoczyk, K.
    Zehmisch, K.
    MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) : 295 - 327
  • [22] Singularity of mean curvature flow of Lagrangian submanifolds
    Chen, JY
    Li, JY
    INVENTIONES MATHEMATICAE, 2004, 156 (01) : 25 - 51
  • [23] Hessian estimates for the Lagrangian mean curvature flow
    Bhattacharya, Arunima
    Wall, Jeremy
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [24] Angle theorems for the Lagrangian mean curvature flow
    Knut Smoczyk
    Mathematische Zeitschrift, 2002, 240 : 849 - 883
  • [25] Angle theorems for the Lagrangian mean curvature flow
    Smoczyk, K
    MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (04) : 849 - 883
  • [26] TRANSLATING SOLUTIONS TO LAGRANGIAN MEAN CURVATURE FLOW
    Neves, Andre
    Tian, Gang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) : 5655 - 5680
  • [27] Harnack inequality for the Lagrangian mean curvature flow
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 247 - 258
  • [28] On the existence of mean curvature flow with transport term
    Liu, Chun
    Sato, Norifumi
    Tonegawa, Yoshihiro
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) : 251 - 277
  • [29] ANCIENT SOLUTIONS AND TRANSLATORS OF LAGRANGIAN MEAN CURVATURE FLOW
    Lotay, Jason D.
    Schulze, Felix
    Szekelyhidi, Gabor
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2024, 140 (01): : 1 - 35
  • [30] Lagrangian mean curvature flow for entire Lipschitz graphs
    Chau, Albert
    Chen, Jingyi
    He, Weiyong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) : 199 - 220