The undirected feedback vertex set problem has a poly(k) kernel

被引:0
|
作者
Burrage, Kevin [1 ]
Estivill-Castro, Vladimir
Fellows, Michael
Langston, Michael
Mac, Shev
Rosamond, Frances
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Griffith Univ, Brisbane, Qld 4111, Australia
[3] Univ Newcastle, Sch EE & CS, Newcastle, NSW 2308, Australia
[4] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[6] Retreat Arts & Sci, Newcastle, NSW, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Resolving a noted open problem, we show that the UNDIRECTED FEEDBACK VERTEX SET problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' <= k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k(11)) kernelization bound.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 50 条
  • [31] Fixed parameter enumeration algorithm for feedback vertex set in weighted undirected graphs
    Wang J.-X.
    Jiang G.-H.
    Chen J.-E.
    Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33 (07): : 1140 - 1152
  • [32] Algorithms for the Independent Feedback Vertex Set Problem
    Tamura, Yuma
    Ito, Takehiro
    Zhou, Xiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (06): : 1179 - 1188
  • [33] ON THE FEEDBACK VERTEX SET PROBLEM IN PERMUTATION GRAPHS
    LIANG, YD
    INFORMATION PROCESSING LETTERS, 1994, 52 (03) : 123 - 129
  • [34] The Feedback Vertex Set Problem of Multiplex Networks
    Zhao, Dawei
    Xu, Lijuan
    Qin, Shao-Meng
    Liu, Guangqi
    Wang, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) : 3492 - 3496
  • [35] On the feedback vertex set problem for a planar graph
    Praktische Mathematik, Chrstn.-Albrechts-Univ. zu Kiel, D-24098 Kiel, Germany
    Comput Vienna New York, 2 (129-155):
  • [36] On the feedback vertex set problem for a planar graph
    Hackbusch, W
    COMPUTING, 1997, 58 (02) : 129 - 155
  • [37] A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs
    Chudak, FA
    Goemans, MX
    Hochbaum, DS
    Williamson, DP
    OPERATIONS RESEARCH LETTERS, 1998, 22 (4-5) : 111 - 118
  • [38] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Xiao, Mingyu
    Guo, Jiong
    ALGORITHMICA, 2015, 71 (01) : 87 - 97
  • [39] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Xiao, Mingyu
    Guo, Jiong
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 825 - 835
  • [40] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Mingyu Xiao
    Jiong Guo
    Algorithmica, 2015, 71 : 87 - 97