Markov-random-field modeling for linear seismic tomography

被引:18
|
作者
Kuwatani, Tatsu [1 ]
Nagata, Kenji [2 ]
Okada, Masato [2 ]
Toriumi, Mitsuhiro [3 ]
机构
[1] Tohoku Univ, Grad Sch Environm Studies, Sendai, Miyagi 9808579, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan
[3] Japan Agcy Marine Earth Sci & Technol, Lab Ocean Earth Life Evolut Res, Yokosuka, Kanagawa 2370061, Japan
关键词
HYPERPARAMETER ESTIMATION; DISTRIBUTIONS;
D O I
10.1103/PhysRevE.90.042137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Modeling Opinion Dynamics in a Social Network Using Markov Random Field
    Kandhway, Kundan
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2018, : 631 - 636
  • [32] Superior perturbation inversion strategy based on Markov random field incorporating measurement matrix optimization in linear array photoacoustic tomography
    Zhao, Ying
    Niu, Zhitian
    Gao, Baohai
    He, Mingjian
    Ren, Yatao
    Qi, Hong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 240
  • [33] Simultaneous Inversion for Pre-stack Seismic Data Based on Markov Random Field
    Zhang, Hongbing
    Guo, Qiang
    Liang, Lifeng
    Shang, Zuoping
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 1023 - 1027
  • [34] Hybrid Seismic Inversion Based on Multi-Order Anisotropic Markov Random Field
    Guo, Qiang
    Zhang, Hongbing
    Cao, Haitao
    Xiao, Wei
    Han, Feilong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 407 - 420
  • [35] Linear regression under Maximum A Posteriori criterion with Markov random field prior
    Wu, XT
    Yan, YH
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 997 - 1000
  • [36] Stochastic seismic tomography by interacting Markov chains
    Bottero, Alexis
    Gesret, Alexandrine
    Romary, Thomas
    Noble, Mark
    Maisons, Christophe
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (01) : 374 - 392
  • [37] Modeling multiple interactions with a Markov random field in query expansion for session search
    Li, Jingfei
    Zhao, Xiaozhao
    Zhang, Peng
    Song, Dawei
    COMPUTATIONAL INTELLIGENCE, 2018, 34 (01) : 345 - 362
  • [38] SAR speckle reduction using wavelet denoising and Markov random field modeling
    Xie, H
    Pierce, LE
    Ulaby, FT
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10): : 2196 - 2212
  • [39] Markov Random Field Modeling in Median Pyramidal Transform Domain for Denoising Applications
    Ilya Gluhovsky
    Vladimir Melnik
    Ilya Shmulevich
    Journal of Mathematical Imaging and Vision, 2002, 16 : 237 - 249
  • [40] Hierarchical Markov random field modeling for texture classification in chest radiographs.
    VargasVoracek, R
    Floyd, CE
    Nolte, LW
    McAdams, P
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 679 - 685