Markov-random-field modeling for linear seismic tomography

被引:18
|
作者
Kuwatani, Tatsu [1 ]
Nagata, Kenji [2 ]
Okada, Masato [2 ]
Toriumi, Mitsuhiro [3 ]
机构
[1] Tohoku Univ, Grad Sch Environm Studies, Sendai, Miyagi 9808579, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan
[3] Japan Agcy Marine Earth Sci & Technol, Lab Ocean Earth Life Evolut Res, Yokosuka, Kanagawa 2370061, Japan
关键词
HYPERPARAMETER ESTIMATION; DISTRIBUTIONS;
D O I
10.1103/PhysRevE.90.042137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Scene estimation from speckled synthetic aperture radar imagery: Markov-random-field approach
    Lankoande, Ousseini
    Hayat, Majeed M.
    Santhanam, Balu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (06) : 1269 - 1281
  • [2] Markov random field modeling for mapping geofluid distributions from seismic velocity structures
    Kuwatani, Tatsu
    Nagata, Kenji
    Okada, Masato
    Toriumi, Mitsuhiro
    EARTH PLANETS AND SPACE, 2014, 66
  • [3] Markov random field modeling for mapping geofluid distributions from seismic velocity structures
    Tatsu Kuwatani
    Kenji Nagata
    Masato Okada
    Mitsuhiro Toriumi
    Earth, Planets and Space, 66
  • [4] Multichannel Seismic Deconvolution Using Markov-Bernoulli Random-Field Modeling
    Heimer, Alon
    Cohen, Israel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07): : 2047 - 2058
  • [5] Deep Markov Random Field for Image Modeling
    Wu, Zhirong
    Lin, Dahua
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 295 - 312
  • [6] Evolutionary optimization in Markov random field modeling
    Wang, X
    Wang, H
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1197 - 1200
  • [7] Modeling Stereopsis via Markov Random Field
    Ming, Yansheng
    Hu, Zhanyi
    NEURAL COMPUTATION, 2010, 22 (08) : 2161 - 2191
  • [8] Prestack Seismic Inversion Based on Anisotropic Markov Random Field
    Guo, Qiang
    Zhang, Hongbing
    Han, Feilong
    Shang, Zuoping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 1069 - 1079
  • [9] SEGMENTATION OF BRAIN TUMOR IMAGES BASED ON ATLAS-REGISTRATION COMBINED WITH A MARKOV-RANDOM-FIELD LESION GROWTH MODEL
    Bauer, Stefan
    Nolte, Lutz-P
    Reyes, Mauricio
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 2018 - 2021
  • [10] A Markov-Random-Field Approach for Extracting Straight-Line Segments of Roofs From High-Resolution Aerial Images
    Marcato Fernandes, Vanessa Jordao
    Dal Poz, Aluir Porfirio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5493 - 5505