Integral complete r-partite graphs

被引:20
|
作者
Wang, LG [1 ]
Li, XL
Hoede, C
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
integral graph; complete r-partite graph; diophantine equation; graph spectrum;
D O I
10.1016/j.disc.2004.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this paper, we give a useful sufficient and necessary condition for complete r-partite graphs to be integral, from which we can construct infinite many new classes of such integral graphs. It is proved that the problem of finding such integral graphs is equivalent to the problem of solving some Diophantine equations. The discovery of these integral complete r-partite graphs is a new contribution to the search of such integral graphs. Finally, we propose several basic open problems for further study. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [41] Determining equitable total chromatic number for infinite classes of complete r-partite graphs
    da Silva, A. G.
    Dantas, S.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2021, 296 (296) : 56 - 67
  • [42] Extremal numbers of disjoint triangles in r-partite graphs
    Zhang, Junxue
    DISCRETE MATHEMATICS, 2023, 346 (09)
  • [43] TOTAL CHROMATIC NUMBER OF COMPLETE R-PARTITE GRAPH
    BERMOND, JC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (DEC): : 279 - 285
  • [44] Factors of r-partite graphs and bounds for the Strong Chromatic Number
    Johansson, Anders
    Johansson, Robert
    Markstrom, Klas
    ARS COMBINATORIA, 2010, 95 : 277 - 287
  • [45] Vertex Decomposable Property of Graphs Whose Complements Are r-Partite
    Saba YASMEEN
    Tongsuo WU
    JournalofMathematicalResearchwithApplications, 2021, 41 (01) : 14 - 24
  • [46] R-PARTITE SELF-COMPLEMENTARY GRAPHS-DIAMETERS
    GANGOPADHYAY, T
    HEBBARE, SPR
    DISCRETE MATHEMATICS, 1980, 32 (03) : 245 - 255
  • [47] Making Kr+1-free graphs r-partite
    Balogh, Jozsef
    Clemen, Felix Christian
    Lavrov, Mikhail
    Lidicky, Bernard
    Pfender, Florian
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 609 - 618
  • [48] COHEN-MACAULAY r-PARTITE GRAPHS WITH MINIMAL CLIQUE COVER
    Madadi, A.
    Zaare-Nahandi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03): : 609 - 617
  • [49] DECOMPOSITION OF R-PARTITE GRAPHS INTO EDGE-DISJOINT HAMILTON CIRCUITS
    LASKAR, R
    AUERBACH, B
    DISCRETE MATHEMATICS, 1976, 14 (03) : 265 - 268
  • [50] Integral complete 4-partite graphs
    Hic, Pavel
    Pokorny, Milan
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3704 - 3705