On a class of quasilinear elliptic problems involving critical exponents

被引:18
|
作者
de Figueiredo, DG
机构
[1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[3] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
关键词
radial solutions; critical Sobolev exponents; positive solutions;
D O I
10.1142/S0219199700000049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the following class of quasilinear elliptic problems in radial form {-(r(alpha)\u'\(beta)u')' = lambda r(delta)u(l-1) + r(gamma)u(q-1) in (0, R) {u > 0, u(R) = u' (0) = 0 where alpha, beta, delta, l, gamma, q are given real numbers, lambda > 0 is a parameter and 0 < R < infinity. Some results on the existence of positive solutions are obtained by combining the R Mountain Pass Theorem with an argument used by Brezis and Nirenberg to overcome the lack of compactness due to the presence of critical Sobolev exponents.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条