Counting strongly connected (k1, k2)-directed cores

被引:0
|
作者
Pittel, Boris [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
counting cores; digraph; strong connectivity; RANDOM GRAPHS; RANDOM DIGRAPHS; DEGREE SEQUENCE; K-CORE; COMPONENT; VERTICES; EDGES; SIZE;
D O I
10.1002/rsa.20759
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider the set of all digraphs on [N] with M edges, whose minimum in-degree and minimum out-degree are at least k(1) and k(2) respectively. For k:=min?{k1,k2}2 and M/Nmax?{k1,k2}+,M=(N), we show that, among those digraphs, the fraction of k-strongly connected digraphs is 1-O(N-(k-1)). Earlier with Dan Poole we identified a sharp edge-density threshold c(k1,k2) for birth of a giant (k(1), k(2))-core in the random digraph D(n,m=[cn]). Combining the claims, for c>c(k1,k2) with probability 1-O(N-(k-1)) the giant (k(1), k(2))-core exists and is k-strongly connected.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [31] A New Inequality for Weakly (K1,K2)-Quasiregular Mappings
    Hong Ya Gao
    Shu Qing Zhou
    Yu Qin Meng
    Acta Mathematica Sinica, English Series, 2007, 23 : 2241 - 2246
  • [32] AN EXACT SEQUENCE INVOLVING K1(ZZPPI) AND K2(ZZPPI)
    OLIVER, R
    LECTURE NOTES IN MATHEMATICS, 1984, 1046 : 255 - 260
  • [33] (K1(x),K2(x))-有限伸张映射
    高红亚
    王芳
    佟玉霞
    安敏
    数学物理学报, 2009, 29 (02) : 456 - 464
  • [34] A New Inequality for Weakly (K1,K2)-Quasiregular Mappings
    Hong Ya GAO College of Mathematics and Computer
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (12) : 2241 - 2246
  • [35] 关于空间(k1,k2)-拟正则映射
    高红亚
    张福元
    应用数学, 2000, (03) : 10 - 14
  • [36] Pseudo-binomial approximation to (k1, k2)-runs
    Upadhye, N. S.
    Kumar, A. N.
    STATISTICS & PROBABILITY LETTERS, 2018, 141 : 19 - 30
  • [37] A new inequality for weakly (K1,K2)-Quasiregular mappings
    Gao, Hong Ya
    Zhou, Shu Qing
    Meng, Yu Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (12) : 2241 - 2246
  • [38] Observation and Polarization Measurements of B± → φK1± and B± → φK2*±
    Aubert, B.
    Bona, M.
    Karyotakis, Y.
    Lees, J. P.
    Poireau, V.
    Prencipe, E.
    Prudent, X.
    Tisserand, V.
    Tico, J. Garra
    Grauges, E.
    Lopez, L.
    Palano, A.
    Pappagallo, M.
    Eigen, G.
    Stugu, B.
    Sun, L.
    Abrams, G. S.
    Battaglia, M.
    Brown, D. N.
    Cahn, R. N.
    Jacobsen, R. G.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Kukartsev, G.
    Lynch, G.
    Osipenkov, I. L.
    Ronan, M. T.
    Tackmann, K.
    Tanabe, T.
    Hawkes, C. M.
    Soni, N.
    Watson, A. T.
    Koch, H.
    Schroeder, T.
    Walker, D.
    Asgeirsson, D. J.
    Fulsom, B. G.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    Barrett, M.
    Khan, A.
    Teodorescu, L.
    Blinov, V. E.
    Bukin, A. D.
    Buzykaev, A. R.
    Druzhinin, V. P.
    Golubev, V. B.
    Onuchin, A. P.
    Serednyakov, S. I.
    PHYSICAL REVIEW LETTERS, 2008, 101 (16)
  • [39] Birth of a giant (k1, k2)-core in the random digraph
    Pittel, B. G.
    Poole, D. J.
    ADVANCES IN APPLIED MATHEMATICS, 2017, 86 : 132 - 174
  • [40] 2 DEOXYRIBONUCLEASES K1 AND K2 ISOLATED FROM MYCELIA OF ASPERGILLUS ORYZAE .2. DETERMINATION OF 5'- AND 3'-TERMINI OF DNA FRAGMENTS PRODUCED BY DNASES K1 AND K2
    KATO, M
    ANDO, T
    IKEDA, Y
    JOURNAL OF BIOCHEMISTRY, 1968, 64 (03): : 329 - &