On the stability of a space vehicle riding on an intense laser beam

被引:22
|
作者
Popova, Elena [1 ]
Efendiev, Messoud [2 ]
Gabitov, Ildar [3 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, GSP 1, Leninskie Gory, Moscow 119991, Russia
[2] Helmholtz Zentrum Munchen Deutsch Forschungszentr, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[3] Skoltech Ctr Photon & Quantum Mat, Bldg 3, Moscow 143026, Russia
关键词
Breakthrough Starshot Initiative; nanocraft; Lightsail; stability; PROPULSION;
D O I
10.1002/mma.4282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Breakthrough Starshot Initiative is suggested to develop the concept of propelling a nanoscale spacecraft by the radiation pressure of an intense laser beam. In this project, the nanocraft is a gram-scale robotic spacecraft comprising two main parts: StarChip and Lightsail. To achieve the goal of the project, it is necessary to solve a number of scientific problems. One of these tasks is to make sure that the nanocraft position and orientation inside the intense laser beam column are stable. The nanocraft driven by intense laser beam pressure acting on its Lightsail is sensitive to the torques and lateral forces reacting on the surface of the sail. These forces influence the orientation and lateral displacement of the spacecraft, thus affecting its dynamics. If unstable, the nanocraft might be expelled from the area of laser beam. In choosing the models for nanocraft stability studies, we are using several assumptions: (i) configuration of nanocraft is treated as a rigid body; (ii) flat or concave shape of circular sail; and (iii) mirror reflection of laser beam from surface of the Lightsail. We found conditions of position stability for spherical and conical shapes of the sail. The simplest stable configurations require the StarChip to be removed from the sail to make the distance to the center of mass of the nanocraft bigger than the curvature radius of the sail. Stability criteria do not require the spinning of the nanocraft. A flat sail is never stable. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1346 / 1354
页数:9
相关论文
共 50 条
  • [21] Electron scattering by an intense continuous laser beam
    Ho, Y. K.
    Wang, J. X.
    Feng, L.
    Scheid, W.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 220 (4-5):
  • [22] Electron scattering by an intense continuous laser beam
    Ho, YK
    Wang, JX
    Feng, L
    Scheid, W
    Hora, H
    PHYSICS LETTERS A, 1996, 220 (4-5) : 189 - 193
  • [23] Observation of electron trapping in an intense laser beam
    Chaloupka, JL
    Meyerhofer, DD
    PHYSICAL REVIEW LETTERS, 1999, 83 (22) : 4538 - 4541
  • [24] Mechanism of electron capture by an intense laser beam
    Yuan, XQ
    Ho, YK
    Wang, PX
    Kong, Q
    Cao, N
    MODERN PHYSICS LETTERS B, 2001, 15 (08): : 235 - 242
  • [25] Propagation of intense laser beam in plasma channel
    Tang, H
    Guo, H
    PHYSICS LETTERS A, 2004, 321 (02) : 111 - 119
  • [26] Terahertz generation by the high intense laser beam
    Hassan, Munther B.
    Al-Janabi, A. H.
    Singh, Monika
    Sharma, R. P.
    JOURNAL OF PLASMA PHYSICS, 2012, 78 : 553 - 558
  • [28] Observation of Electron Trapping in an Intense Laser Beam
    Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, United States
    Phys Rev Lett, 22 (4538-4541):
  • [29] Enhancing laser beam performance by interfering intense laser beamlets
    A. Morace
    N. Iwata
    Y. Sentoku
    K. Mima
    Y. Arikawa
    A. Yogo
    A. Andreev
    S. Tosaki
    X. Vaisseau
    Y. Abe
    S. Kojima
    S. Sakata
    M. Hata
    S. Lee
    K. Matsuo
    N. Kamitsukasa
    T. Norimatsu
    J. Kawanaka
    S. Tokita
    N. Miyanaga
    H. Shiraga
    Y. Sakawa
    M. Nakai
    H. Nishimura
    H. Azechi
    S. Fujioka
    R. Kodama
    Nature Communications, 10
  • [30] Enhancing laser beam performance by interfering intense laser beamlets
    Morace, A.
    Iwata, N.
    Sentoku, Y.
    Mima, K.
    Arikawa, Y.
    Yogo, A.
    Andreev, A.
    Tosaki, S.
    Vaisseau, X.
    Abe, Y.
    Kojima, S.
    Sakata, S.
    Hata, M.
    Lee, S.
    Matsuo, K.
    Kamitsukasa, N.
    Norimatsu, T.
    Kawanaka, J.
    Tokita, S.
    Miyanaga, N.
    Shiraga, H.
    Sakawa, Y.
    Nakai, M.
    Nishimura, H.
    Azechi, H.
    Fujioka, S.
    Kodama, R.
    NATURE COMMUNICATIONS, 2019, 10 (1)