Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

被引:80
|
作者
Mi, X. [1 ]
Cady, J. V. [1 ,3 ]
Zajac, D. M. [1 ]
Stehlik, J. [1 ,4 ]
Edge, L. F. [2 ]
Petta, J. R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; CAVITY; SPIN; STORAGE;
D O I
10.1063/1.4974536
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g(c)/2 pi = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots
    Heinl, Julia
    Schneider, Martin
    Brouwer, Piet W.
    PHYSICAL REVIEW B, 2013, 87 (24)
  • [32] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    NATURE COMMUNICATIONS, 2012, 3
  • [33] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    Nature Communications, 3
  • [34] Split-gate cavity coupler for silicon circuit quantum electrodynamics
    Borjans, F.
    Croot, X.
    Putz, S.
    Mi, X.
    Quinn, S. M.
    Pan, A.
    Kerckhoff, J.
    Pritchett, E. J.
    Jackson, C. A.
    Edge, L. F.
    Ross, R. S.
    Ladd, T. D.
    Borselli, M. G.
    Gyure, M. F.
    Petta, J. R.
    APPLIED PHYSICS LETTERS, 2020, 116 (23)
  • [35] On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots
    Harvey-Collard, Patrick
    Zheng, Guoji
    Dijkema, Jurgen
    Samkharadze, Nodar
    Sammak, Amir
    Scappucci, Giordano
    Vandersypen, Lieven M. K.
    PHYSICAL REVIEW APPLIED, 2020, 14 (03):
  • [36] Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot
    Joecker, Benjamin
    Cerfontaine, Pascal
    Haupt, Federica
    Schreiber, Lars R.
    Kardynal, Beata E.
    Bluhm, Hendrik
    PHYSICAL REVIEW B, 2019, 99 (20)
  • [37] Gate-Defined Accumulation-Mode Quantum Dots in Monolayer and Bilayer WSe2
    Davari, S.
    Stacy, J.
    Mercado, A. M.
    Tull, J. D.
    Basnet, R.
    Pandey, K.
    Watanabe, K.
    Taniguchi, T.
    Hu, J.
    Churchill, H. O. H.
    PHYSICAL REVIEW APPLIED, 2020, 13 (05):
  • [38] Universal quantum gate with hybrid qubits in circuit quantum electrodynamics
    Yang, Chui-Ping
    Zheng, Zhen-Fei
    Zhang, Yu
    OPTICS LETTERS, 2018, 43 (23) : 5765 - 5768
  • [39] Resonant scattering in graphene with a gate-defined chaotic quantum dot
    Schneider, Martin
    Brouwer, Piet W.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [40] Edgeless and purely gate-defined nanostructures in InAs quantum wells
    Mittag, Christopher
    Karalic, Matija
    Lei, Zijin
    Tschirky, Thomas
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    APPLIED PHYSICS LETTERS, 2018, 113 (26)