Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

被引:80
|
作者
Mi, X. [1 ]
Cady, J. V. [1 ,3 ]
Zajac, D. M. [1 ]
Stehlik, J. [1 ,4 ]
Edge, L. F. [2 ]
Petta, J. R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; CAVITY; SPIN; STORAGE;
D O I
10.1063/1.4974536
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g(c)/2 pi = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Quantum computation on gate-defined semiconductor quantum dots
    Li HaiOu
    Yao Bing
    Tu Tao
    Guo GuoPing
    CHINESE SCIENCE BULLETIN, 2012, 57 (16): : 1919 - 1924
  • [3] Quantum computation on gate-defined semiconductor quantum dots
    LI HaiOu
    Science Bulletin, 2012, (16) : 1919 - 1924
  • [4] Gate-defined quantum dots on carbon nanotubes
    Biercuk, MJ
    Garaj, S
    Mason, N
    Chow, JM
    Marcus, CM
    NANO LETTERS, 2005, 5 (07) : 1267 - 1271
  • [5] A gate-defined silicon quantum dot molecule
    Liu, Hongwu
    Fujisawa, Toshimasa
    Inokawa, Hiroshi
    Ono, Yukinori
    Fujiwara, Akira
    Hirayama, Yoshiro
    APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [6] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [7] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [8] All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics
    Scarlino, P.
    van Woerkom, D. J.
    Stockklauser, A.
    Koski, J., V
    Collodo, M. C.
    Gasparinetti, S.
    Reichl, C.
    Wegscheider, W.
    Ihn, T.
    Ensslin, K.
    Wallraff, A.
    PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [9] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [10] Bell inequality violation in gate-defined quantum dots
    Paul Steinacker
    Tuomo Tanttu
    Wee Han Lim
    Nard Dumoulin Stuyck
    MengKe Feng
    Santiago Serrano
    Ensar Vahapoglu
    Rocky Y. Su
    Jonathan Y. Huang
    Cameron Jones
    Kohei M. Itoh
    Fay E. Hudson
    Christopher C. Escott
    Andrea Morello
    Andre Saraiva
    Chih Hwan Yang
    Andrew S. Dzurak
    Arne Laucht
    Nature Communications, 16 (1)