Fuzzy clustering with pairwise constraints for knowledge-driven image categorisation

被引:13
|
作者
Grira, N. [1 ]
Crucianu, M. [1 ]
Boujemaa, N. [1 ]
机构
[1] INRIA Rocquencourt, IMEDIA Res Grp, F-78153 Le Chesnay, France
来源
关键词
D O I
10.1049/ip-vis:20050060
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of categories in image databases usually relies on clustering algorithms that only exploit the feature-based similarities between images. The addition of semantic information should help improve the results of the categorisation process. Pairwise constraints between some images are easy to provide, even when the user has a very incomplete prior knowledge of the image categories that one can expect to find in a database. A categorisation approach relying on such semantic information is called semi-supervised clustering. A new semi-supervised clustering algorithm, pairwise-constrained competitive agglomeration, is presented on the basis of a fuzzy cost function that takes pairwise constraints into account. Evaluations show that with a rather low number of constraints this algorithm can significantly improve the categorisation.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [31] Towards Knowledge-Driven Annotation
    Mrabet, Yassine
    Gardent, Claire
    Foulonneau, Muriel
    Simperl, Elena
    Ras, Eric
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2425 - 2431
  • [32] Towards knowledge-driven breeding
    Qiuyue Chen
    Feng Tian
    Nature Plants, 2021, 7 : 242 - 243
  • [33] AN APPROACH TO KNOWLEDGE-DRIVEN SEGMENTATION
    HYDE, J
    FULLWOOD, JA
    CORRALL, DR
    IMAGE AND VISION COMPUTING, 1985, 3 (04) : 198 - 205
  • [34] KdTNet: Medical Image Report Generation via Knowledge-Driven Transformer
    Cao, Yiming
    Cui, Lizhen
    Yu, Fuqiang
    Zhang, Lei
    Li, Zhen
    Liu, Ning
    Xu, Yonghui
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 117 - 132
  • [35] Knowledge-Driven Active Learning
    Ciravegna, Gabriele
    Precioso, Frederic
    Betti, Alessandro
    Mottin, Kevin
    Gori, Marco
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 38 - 54
  • [36] Knowledge-driven profile dynamics
    Ferme, Eduardo
    Garapa, Marco
    Reis, Mauricio D. L.
    Almeida, Yuri
    Paulino, Teresa
    Rodrigues, Mariana
    ARTIFICIAL INTELLIGENCE, 2024, 331
  • [37] Knowledge-driven lead discovery
    Pirard, B
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2005, 5 (11) : 1045 - 1052
  • [38] ... in the push for a knowledge-driven economy
    Masood, E
    NATURE, 1999, 398 (6724) : 181 - 181
  • [39] Building a Knowledge-driven Organization
    Insogna, Dennis
    LEARNING ORGANIZATION, 2005, 12 (02): : 219 - 221
  • [40] Knowledge-driven information mining in remote-sensing image archives
    Datcu, M
    Seidel, K
    D'Elia, S
    Marchetti, PG
    ESA BULLETIN-EUROPEAN SPACE AGENCY, 2002, (110) : 26 - 33