Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

被引:190
|
作者
Barbour, Edward [1 ]
Mignard, Dimitri [2 ]
Ding, Yulong [1 ]
Li, Yongliang [1 ]
机构
[1] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
[2] Univ Edinburgh, Inst Energy Syst, Edinburgh EH8 9YL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Adiabatic Compressed Air Energy Storage; Packed beds; Thermal energy storage; Thermodynamic analysis; HEAT-TRANSFER; THERMODYNAMIC ANALYSIS; SYSTEMS; DESIGN; PLANT; FLOW; CAES;
D O I
10.1016/j.apenergy.2015.06.019
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge-storage-discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:804 / 815
页数:12
相关论文
共 50 条
  • [41] Experimental investigation of a packed bed thermal energy storage system
    Cascetta, Mario
    Cau, Giorgio
    Puddu, Pierpaolo
    Serra, Fabio
    33RD UIT (ITALIAN UNION OF THERMO-FLUID DYNAMICS) HEAT TRANSFER CONFERENCE, 2015, 655
  • [42] MILP model for a packed bed sensible thermal energy storage
    Koller, Martin
    Hofmann, Rene
    Walter, Heimo
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 125 : 40 - 53
  • [43] Thermodynamic Analysis of Packed Bed Thermal Energy Storage System
    Huan Guo
    Yujie Xu
    Cong Guo
    Haisheng Chen
    Yifei Wang
    Zheng Yang
    Ye Huang
    Binlin Dou
    Journal of Thermal Science, 2020, 29 : 445 - 456
  • [44] Packed Bed Thermal Energy Storage System: Parametric Study
    Rabi, Ayah Marwan
    Radulovic, Jovana
    Buick, James M.
    THERMO, 2024, 4 (03): : 295 - 314
  • [45] Parametric Analysis of a Packed Bed Thermal Energy Storage System
    Ortega-Fernandez, Inigo
    Lorono, Inaki
    Faik, Abdessamad
    Uriz, Irantzu
    Rodriguez-Aseguinolaza, Javier
    D'Aguanno, Bruno
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2016), 2017, 1850
  • [46] A hybrid model for packed bed thermal energy storage system
    Padmanabhan, Shri Balaji
    Mabrouk, Mohamed Tahar
    Lacarriere, Bruno
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [47] Performance Analysis and Optimization of Compressed Air Energy Storage Integrated with Latent Thermal Energy Storage
    Yu, Xiaoli
    Dou, Wenbo
    Zhang, Zhiping
    Hong, Yan
    Qian, Gao
    Li, Zhi
    ENERGIES, 2024, 17 (11)
  • [48] Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers
    Guo, Chaobin
    Zhang, Keni
    Pan, Lehua
    Cai, Zuansi
    Li, Cai
    Li, Yi
    APPLIED ENERGY, 2017, 203 : 948 - 958
  • [49] Off-design modeling and performance analysis of supercritical compressed air energy storage systems with packed bed cold storage
    Guo, Huan
    Xu, Yujie
    Zhu, Yilin
    Chen, Haisheng
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [50] Control strategy effect on storage performance for packed-bed thermal energy storage
    Wang, Yan
    Wang, Zhifeng
    Yuan, Guofeng
    SOLAR ENERGY, 2023, 253 : 73 - 84