Machine-learning-guided directed evolution for protein engineering

被引:621
|
作者
Yang, Kevin K. [1 ]
Wu, Zachary [1 ]
Arnold, Frances H. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
STABILITY CHANGES; SEQUENCE; MUTATIONS; PREDICTION; KERNEL; MODEL;
D O I
10.1038/s41592-019-0496-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein engineering through machine-learning-guided directed evolution enables the optimization of protein functions. Machine-learning approaches predict how sequence maps to function in a data-driven manner without requiring a detailed model of the underlying physics or biological pathways. Such methods accelerate directed evolution by learning from the properties of characterized variants and using that information to select sequences that are likely to exhibit improved properties. Here we introduce the steps required to build machine-learning sequence-function models and to use those models to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to the use of machine learning for protein engineering, as well as the current literature and applications of this engineering paradigm. We illustrate the process with two case studies. Finally, we look to future opportunities for machine learning to enable the discovery of unknown protein functions and uncover the relationship between protein sequence and function.
引用
收藏
页码:687 / 694
页数:8
相关论文
共 50 条
  • [41] Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
    Widman, Adam J.
    Shah, Minita
    Frydendahl, Amanda
    Halmos, Daniel
    Khamnei, Cole C.
    Ogaard, Nadia
    Rajagopalan, Srinivas
    Arora, Anushri
    Deshpande, Aditya
    Hooper, William F.
    Quentin, Jean
    Bass, Jake
    Zhang, Mingxuan
    Langanay, Theophile
    Andersen, Laura
    Steinsnyder, Zoe
    Liao, Will
    Rasmussen, Mads Heilskov
    Henriksen, Tenna Vesterman
    Jensen, Sarah ostrup
    Nors, Jesper
    Therkildsen, Christina
    Sotelo, Jesus
    Brand, Ryan
    Schiffman, Joshua S.
    Shah, Ronak H.
    Cheng, Alexandre Pellan
    Maher, Colleen
    Spain, Lavinia
    Krause, Kate
    Frederick, Dennie T.
    den Brok, Wendie
    Lohrisch, Caroline
    Shenkier, Tamara
    Simmons, Christine
    Villa, Diego
    Mungall, Andrew J.
    Moore, Richard
    Zaikova, Elena
    Cerda, Viviana
    Kong, Esther
    Lai, Daniel
    Malbari, Murtaza S.
    Marton, Melissa
    Manaa, Dina
    Winterkorn, Lara
    Gelmon, Karen
    Callahan, Margaret K.
    Boland, Genevieve
    Potenski, Catherine
    NATURE MEDICINE, 2024, 30 (06) : 1655 - 1666
  • [42] Engineering Targeted Lectins by Computer-Guided Directed Evolution
    Kazan, Ismail C.
    Sharma, Prerna
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 223A - 223A
  • [43] First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics
    Synan, Lilly
    Ghazvini, Saman
    Uthaman, Saji
    Cutshaw, Gabriel
    Lee, Che-Yu
    Waite, Joshua
    Wen, Xiaona
    Sarkar, Soumik
    Lin, Eugene
    Santillan, Mark
    Santillan, Donna
    Bardhan, Rizia
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (32) : 38185 - 38200
  • [44] Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis
    Reis, Marcus
    Gusev, Filipp
    Taylor, Nicholas G.
    Chung, Sang Hun
    Verber, Matthew D.
    Lee, Yueh Z.
    Isayev, Olexandr
    Leibfarth, Frank A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (42) : 17677 - 17689
  • [45] Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys
    Roy, Ankit
    Taufique, M. F. N.
    Khakurel, Hrishabh
    Devanathan, Ram
    Johnson, Duane D.
    Balasubramanian, Ganesh
    NPJ MATERIALS DEGRADATION, 2022, 6 (01)
  • [46] Adaptive machine learning for protein engineering
    Hie, Brian L.
    Yang, Kevin K.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 72 : 145 - 152
  • [47] Optimizing the search algorithm for protein engineering by directed evolution
    Fox, R
    Roy, A
    Govindarajan, S
    Minshull, J
    Gustafsson, C
    Jones, JT
    Emig, R
    PROTEIN ENGINEERING, 2003, 16 (08): : 589 - 597
  • [48] Applications of Protein Engineering and Directed Evolution in Plant Research
    Engqvist, Martin K. M.
    Rabe, Kersten S.
    PLANT PHYSIOLOGY, 2019, 179 (03) : 907 - 917
  • [49] Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature
    de Castro, Pedro Baptista
    Terashima, Kensei
    Yamamoto, Takafumi D.
    Hou, Zhufeng
    Iwasaki, Suguru
    Matsumoto, Ryo
    Adachi, Shintaro
    Saito, Yoshito
    Song, Peng
    Takeya, Hiroyuki
    Takano, Yoshihiko
    NPG ASIA MATERIALS, 2020, 12 (01)
  • [50] Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature
    Pedro Baptista de Castro
    Kensei Terashima
    Takafumi D Yamamoto
    Zhufeng Hou
    Suguru Iwasaki
    Ryo Matsumoto
    Shintaro Adachi
    Yoshito Saito
    Peng Song
    Hiroyuki Takeya
    Yoshihiko Takano
    NPG Asia Materials, 2020, 12