Local Stabilization of Continuous-Time T-S Fuzzy Systems With Partly Measurable Premise Variables and Time-Varying Delay

被引:0
|
作者
Wu, Yue [1 ,2 ]
Dong, Jiuxiang [1 ,2 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2021年 / 51卷 / 01期
基金
中国国家自然科学基金;
关键词
Partly measurable premise variables; reachable set; T-S fuzzy system; time-varying delay;
D O I
10.1109/TSMC.2018.2871100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the local stabilization problem for T-S fuzzy systems with partly measurable premise variables and time-varying delay. First, by using the measurable premise variables, a novel output feedback controller scheme is proposed. Second, via restricting the reachable set into an ellipsoid set, which is bounded by the objective region, the system state can be contained into a prespecified area so that the purpose of local stabilization can be fulfilled. Furthermore, because of network delay, there is a deviation between the membership function of the system and those of the controller. By exploring the information of the deviation, the stabilization condition can be further relaxed. Compared with the existing results, the new asynchronous controller strategy can simultaneously make full use of the information of the measurable premise variables and the aforementioned deviation for a less conservative result. Finally, an illustrative example is given to show the applicability of the presented approach.
引用
收藏
页码:326 / 338
页数:13
相关论文
共 50 条
  • [41] Further Results on Stability Analysis of T-S Fuzzy Systems With Time-Varying Delay
    Wang, Wei-Min
    Wang, Yan-Wu
    Zeng, Hong-Bing
    Huang, Jian
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (06) : 3529 - 3541
  • [42] Kalman filtering for continuous-time systems with time-varying delay
    Wang, W.
    Zhang, H.
    Xie, L.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (04): : 590 - 600
  • [43] Hierarchical admissibility criteria for T-S fuzzy singular systems with time-varying delay
    Chen, Yun
    Chen, Gang
    FUZZY SETS AND SYSTEMS, 2024, 492
  • [44] Robust Control for a Class of T-S Fuzzy Systems with Interval Time-varying Delay
    Li, Shengtao
    Jing, Yuanwei
    Liu, Xiaomei
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (04) : 737 - 743
  • [45] Further results on stability criteria for T-S fuzzy systems with time-varying delay
    Liu, Yajuan
    Park, Ju H.
    Lee, S. M.
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4261 - 4265
  • [46] Fault Tolerant Control for T-S Fuzzy Systems With Interval Time-Varying Delay
    You, Fuqiang
    Li, Mingjian
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 223 - 228
  • [47] New Delay-Dependent Stabilization conditions of T-S Fuzzy Systems With Time Varying Delay
    Gassara, Hamdi
    El Hajjaji, Ahmed
    Chaabane, Mohamed
    MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 19 - 24
  • [48] Delay-Derivative/Distribution Dependent Stability and Stabilization Criteria for T-S Fuzzy Systems With Random Time-Varying Delay
    Yin, Zongming
    Jiang, Xiefu
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (05) : 1628 - 1637
  • [49] Improved integral inequality approach on stabilization for continuous-time systems with time-varying input delay
    Cheng, Jun
    Xiong, Lianglin
    NEUROCOMPUTING, 2015, 160 : 274 - 280
  • [50] Delay-Variation-Dependent Criteria on Stability and Stabilization for Discrete-Time T-S Fuzzy Systems With Time-Varying Delays
    Chen, Wen-Hu
    Zhang, Chuan-Ke
    Xie, Ke-You
    Zhu, Cui
    He, Yong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (11) : 4856 - 4866