Sum sequences modulo n

被引:0
|
作者
Chung, Fan [1 ]
Folkman, Jon [1 ]
Graham, Ron [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
关键词
Sequences; Uniform distribution; CYCLIC DIFFERENCE SETS; PERFECT ADDITION SETS;
D O I
10.1016/j.jcta.2018.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sum sequence modulo n is a sequence S = (s(1), s(2), . . . , s(d)) of elements in Z/nZ such that every x is an element of Z/nZ can be represented as s(i)+s(j), i < j, in the same number lambda of ways. For example, (0,1, 2, 4) is a sum sequence modulo 6 with lambda = 1. We examine polynomials associated with sum sequences using tools from number theory, combinatorics and Galois theory. In particular, we give a complete characterization of sum sequences and their associated polynomials. We also describe some variations on these ideas and mention several possible generalizations to arbitrary finite groups. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 314
页数:25
相关论文
共 50 条
  • [31] THE PERIOD OF FIBONACCI SEQUENCES MODULO M
    BROWN, KS
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (03): : 278 - 279
  • [32] Density Modulo 1 of Sublacunary Sequences
    R. K. Akhunzhanov
    N. G. Moshchevitin
    Mathematical Notes, 2005, 77 : 741 - 750
  • [33] A Note on Polynomial Sequences Modulo Integers
    Javaheri, Mohammad
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (01)
  • [34] Sequences that omit a box (modulo 1)
    Baker, Roger C.
    ADVANCES IN MATHEMATICS, 2011, 227 (05) : 1757 - 1771
  • [35] Sum and direct sum of frame sequences
    Koo, Yoo Young
    Lim, Jae Kun
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07): : 856 - 870
  • [36] REALIZATION OF A SUM OF SEQUENCES BY A SUM GRAPH
    KOREN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (04) : 396 - 403
  • [37] Distribution of Geometric Sequences Modulo 1
    Hajime Kaneko
    Results in Mathematics, 2008, 52 : 91 - 109
  • [38] On the distribution modulo 1 of exponential sequences
    Akhunzhanov, RK
    MATHEMATICAL NOTES, 2004, 76 (1-2) : 153 - 160
  • [39] Distribution of Wythoff Sequences Modulo One
    Kawsumarng, Sutasinee
    Khemaratchatakumthorn, Tammatada
    Noppakaew, Passawan
    Pongsriiam, Prapanpong
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1045 - 1053
  • [40] Sequences of binomial coefficients modulo prime
    Zyuz'kov, Valentin M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (84): : 14 - 22