On the computability of reachable and invariant sets

被引:0
|
作者
Collins, Pieter [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
来源
2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8 | 2005年
关键词
computable analysis; reachable set; invariant set; computable topological space; sernicontinuous function; approximation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The computation of reachable and invariant sets of nonlinear dynamic and control systems are important problems of systems theory. In this paper we consider the computability of these sets using Turing machines to perform approximate computations. We use Weihrauch's type-two theory of effectivity for computable analysis and topology, which provides a natural setting for performing computations on sets and maps. The main results are that the reachable set is lower-semicomputable, but upper-semicomputable only if it equals the chain-reachable set, whereas invariant sets are upper-semicomputable.
引用
收藏
页码:4187 / 4192
页数:6
相关论文
共 50 条
  • [21] Underapproximating Backward Reachable Sets by Semialgebraic Sets
    Xue, Bai
    She, Zhikun
    Easwaran, Arvind
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (10) : 5185 - 5197
  • [22] Algorithms for computing reachable sets and control sets
    Colonius, F
    Szolnoki, D
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 723 - 728
  • [23] On the computability of rotation sets and their entropies
    Burr, Michael A.
    Schmoll, Martin
    Wolf, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (02) : 367 - 401
  • [24] CONTROLLABILITY AND TOPOLOGY OF REACHABLE SETS
    HERMES, HG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A817 - A818
  • [25] Minkowski content for reachable sets
    Cannarsa, Piermarco
    Czarnecki, Marc-Olivier
    MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 507 - 530
  • [26] Minkowski content for reachable sets
    Piermarco Cannarsa
    Marc-Olivier Czarnecki
    manuscripta mathematica, 2010, 131 : 507 - 530
  • [27] ON THE INTERSECTION OF CONTROLLABLE AND REACHABLE SETS
    GAYEK, JE
    VINCENT, TL
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 50 (02) : 267 - 278
  • [28] Data-Driven Estimation of Backward Reachable and Invariant Sets for Unmodeled Systems via Active Learning
    Chakrabarty, Ankush
    Raghunathan, Arvind
    Di Cairano, Stefano
    Danielson, Claus
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 372 - 377
  • [29] Computability and complexity of Julia sets: a review
    Hiratsuka, Kota
    Sato, Yuzuru
    Arai, Zin
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (04): : 410 - 423
  • [30] INVARIANCE UNDER NONLINEAR PERTURBATIONS FOR REACHABLE AND ALMOST-REACHABLE SETS
    SEIDMAN, TI
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1987, 97 : 336 - 345