ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTION

被引:3
|
作者
Budak, H. [1 ]
Tunc, T. [1 ]
Sarikaya, M. Z. [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math Duzce, Duzce, Turkey
关键词
Hermite-Hadamard inequality; F-convex; midpoint inequality; trapezoid inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.18514/MMN.2019.2436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we firstly give some properties the family F and F-convex function which are defined by B. Samet. Then, we obtain some midpoint inequalities for differentiable function. Moreover, we establish some midpoint and trapezoid type inequalities for function whose second derivatives in absolute value are F-convex.
引用
收藏
页码:169 / 191
页数:23
相关论文
共 50 条
  • [41] Multidimensional Hermite-Hadamard inequalities and the convex order
    de la Cal, J.
    Carcamo, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 248 - 261
  • [42] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [43] On Ostrowski Type Inequalities For F-convex Function
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [44] Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions
    Ozcan, Serap
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [45] FRACTIONAL TYPE HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND AG(Log)-CONVEX FUNCTIONS
    Luo, Zijian
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 649 - 662
  • [46] HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS
    Yin, Hong-Ping
    Qi, Feng
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2015, 27 (01) : 71 - 79
  • [47] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    FILOMAT, 2015, 29 (07) : 1565 - 1580
  • [48] Hermite-Hadamard type inequalities for (p, h)-convex functions on Rn
    Cao, Yi
    Ruan, Jianmiao
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 417 - 432
  • [49] HERMITE-HADAMARD TYPE INEQUALITIES FOR UNIFORMLY CONVEX FUNCTIONS WITH RESPECT TO GEODESIC IN
    Barsam, Hasan
    Sayyari, Yamin
    Sattarzadeh, Alireza
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 81 - 91
  • [50] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Kiris, Mehmet Eyup
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 491 - 501