BoSR: A CNN-based aurora image retrieval method

被引:20
|
作者
Yang, Xi [1 ]
Wang, Nannan [1 ]
Song, Bin [1 ]
Gao, Xinbo [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bag of salient regions; Circular fisheye lens; Aurora image retrieval; CONVOLUTIONAL NEURAL-NETWORKS; SCALE;
D O I
10.1016/j.neunet.2019.04.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
BF The deep learning models especially the CNN have achieved amazing performance on natural image retrieval. However, remote sensing images captured with anamorphic lens are still retrieved via manual selection or traditional SIFT-based methods. How to leverage the advanced CNN models for remote sensing image retrieval is a new task of significance. This paper focuses on the aurora images captured with all-sky-imagers (ASI). By analyzing the imaging principle of ASI and characteristics of aurora, a salient region determination (SRD) scheme is proposed and embedded into the Mask R-CNN framework. Thus, we can regard an image as a "bag" of salient regions (BoSR). In practice, each salient region is represented with a CNN feature extracted from the SRD embedded Mask R-CNN. After clustered to generate a visual vocabulary, each CNN feature is quantized to its nearest center for indexing. In the stage of online retrieval, by computing the similarity scores between query image and all images in the dataset, ranking results can be obtained and image with the highest value is exported as the top rank. Extensive experiments are conducted on the big aurora data, and the results demonstrate that the proposed method improves the retrieval accuracy and efficiency. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 50 条
  • [1] A NOVEL CNN-BASED MATCH KERNEL FOR IMAGE RETRIEVAL
    Zhou, Dan
    Li, Xue
    Zhang, Yu-Jin
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2445 - 2449
  • [2] CNN-Based Pill Image Recognition for Retrieval Systems
    Al-Hussaeni, Khalil
    Karamitsos, Ioannis
    Adewumi, Ezekiel
    Amawi, Rema M.
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [3] Improved CNN-Based Hashing for Encrypted Image Retrieval
    Pan, Wenyan
    Wang, Meimin
    Qin, Jiaohua
    Zhou, Zhili
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [4] CNN-based Style Vector for Style Image Retrieval
    Matsuo, Shin
    Yanai, Keiji
    ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 309 - 312
  • [5] A CNN-BASED METHOD FOR SAR IMAGE DESPECKLING
    Ma, Dejiao
    Zhang, Xiaoling
    Tang, Xinxin
    Ming, Jing
    Shi, Jun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4272 - 4275
  • [6] Mixture of Deep CNN-based Fnsemble Model for Image Retrieval
    Huang, Hsin-Kai
    Chiu, Chien-Fang
    Kuo, Chien-Hao
    Wu, Yu-Chi
    Chu, Narisa N. Y.
    Chang, Pao-Chi
    2016 IEEE 5TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS, 2016,
  • [7] COLOR STEREO IMAGE RETRIEVAL USING A RESIDUAL CNN-BASED APPROACH
    Ghodhhani, Emna
    Kaaniche, Mounir
    Benazza-Benyahia, Amel
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 109 - 112
  • [8] CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging
    Perdios, Dimitris
    Vonlanthen, Manuel
    Martinez, Florian
    Arditi, Marcel
    Thiran, Jean-Philippe
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (04) : 1154 - 1168
  • [9] A Method for Improving CNN-Based Image Recognition Using DCGAN
    Fang, Wei
    Zhang, Feihong
    Sheng, Victor S.
    Ding, Yewen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 57 (01): : 167 - 178
  • [10] CNN-Based Stereoscopic Image Inpainting
    Chen, Shen
    Ma, Wei
    Qin, Yue
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 95 - 106