A Method for Improving CNN-Based Image Recognition Using DCGAN

被引:122
|
作者
Fang, Wei [1 ,2 ]
Zhang, Feihong [1 ]
Sheng, Victor S. [3 ]
Ding, Yewen [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
[3] Univ Cent Arkansas, Dept Comp Sci, Conway, AR 72035 USA
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2018年 / 57卷 / 01期
关键词
DCGAN; image recognition; CNN; samples;
D O I
10.32604/cmc.2018.02356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image recognition has always been a hot research topic in the scientific community and industry. The emergence of convolutional neural networks(CNN) has made this technology turned into research focus on the field of computer vision, especially in image recognition. But it makes the recognition result largely dependent on the number and quality of training samples. Recently, DCGAN has become a frontier method for generating images, sounds, and videos. In this paper, DCGAN is used to generate sample that is difficult to collect and proposed an efficient design method of generating model. We combine DCGAN with CNN for the second time. Use DCGAN to generate samples and training in image recognition model, which based by CNN. This method can enhance the classification model and effectively improve the accuracy of image recognition. In the experiment, we used the radar profile as dataset for 4 categories and achieved satisfactory classification performance. This paper applies image recognition technology to the meteorological field.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [1] IMPROVING CNN-BASED VISEME RECOGNITION USING SYNTHETIC DATA
    Mattos, Andrea Britto
    Borges Oliveira, Dario Augusto
    Morais, Edmilson da Silva
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [2] CNN-based image recognition for topology optimization
    Lee, Seunghye
    Kim, Hyunjoo
    Lieu, Qui X.
    Lee, Jaehong
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [3] Improving CNN-based solutions for emotion recognition using evolutionary algorithms
    Mohammadrezaei, Parsa
    Aminan, Mohammad
    Soltanian, Mohammad
    Borna, Keivan
    RESULTS IN APPLIED MATHEMATICS, 2023, 18
  • [4] Image Infringement Judgement with CNN-based Face Recognition
    Li, Jiawei
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 610 - 615
  • [5] CNN-Based Pill Image Recognition for Retrieval Systems
    Al-Hussaeni, Khalil
    Karamitsos, Ioannis
    Adewumi, Ezekiel
    Amawi, Rema M.
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [6] A CNN-BASED METHOD FOR SAR IMAGE DESPECKLING
    Ma, Dejiao
    Zhang, Xiaoling
    Tang, Xinxin
    Ming, Jing
    Shi, Jun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4272 - 4275
  • [7] BoSR: A CNN-based aurora image retrieval method
    Yang, Xi
    Wang, Nannan
    Song, Bin
    Gao, Xinbo
    NEURAL NETWORKS, 2019, 116 : 188 - 197
  • [8] Improving CNN-based activity recognition by data augmentation and transfer learning
    Kalouris, Gerasimos
    Zacharaki, Evangelia I.
    Megalooikonomou, Vasileios
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1387 - 1394
  • [9] Carcass image segmentation using CNN-based methods
    Gonçalves D.N.
    Weber V.A.D.M.
    Pistori J.G.B.
    Gomes R.D.C.
    de Araujo A.V.
    Pereira M.F.
    Gonçalves W.N.
    Pistori H.
    Pistori, Hemerson (pistori@ucdb.br), 1600, China Agricultural University (08) : 560 - 572
  • [10] How Image Degradations Affect Deep CNN-based Face Recognition?
    Karahan, Samil
    Yildirm, Merve Kilinc
    Kirtac, Kadir
    Rende, Ferhat Sukru
    Butun, Gultekin
    Ekenel, Hazim Kemal
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2016), 2016, P-260