Abnormal Wind Turbine Data Identification Using a Dirichlet Process Gaussian Mixture Model

被引:1
|
作者
Gan, Yu [1 ]
Ye, Shaoqing [2 ]
Guo, Peng [1 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] State Key Lab Wind Energy Equipment & Control Tec, Beijing 100080, Peoples R China
关键词
Wind turbine; Abnormal data identification; Dirichlet Process Gaussian Mixture Model (DPGMM);
D O I
10.1109/CCDC55256.2022.10034077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A large amount of abnormal data will be generated during the actual wind turbine operation, thus the raw data can't be directly applied to the subsequent work such as wind turbine power prediction and generation performance evaluation. This paper proposes an abnormal data identification method based on the Dirichlet Process Gaussian Mixture Model (DPGMM) to preprocess the raw data effectively. Firstly, all data points are allocated into corresponding power bins created in the horizontal power direction with a certain interval in the wind speed-power (V-P) coordinate system. And then, the DPGMM model that can adaptively determine the optimal number of Gaussian components is used to cluster the data points in each power bin. At last, combined with the parameters of each Gaussian component confidence ellipse and data points distribution characteristics in V-P coordinate system, the abnormal Gaussian components and their clustering, abnormal data can be accurately identified. Using actual wind turbine SCADA data, the proposed method is demonstrated to be effective.
引用
收藏
页码:529 / 534
页数:6
相关论文
共 50 条
  • [31] Outlier detection in traffic data based on the Dirichlet process mixture model
    Ngan, Henry Y. T.
    Yung, Nelson H. C.
    Yeh, Anthony G. O.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2015, 9 (07) : 773 - 781
  • [32] A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data
    Reich, Brian J.
    Bondell, Howard D.
    BIOMETRICS, 2011, 67 (02) : 381 - 390
  • [33] A Dirichlet process mixture model for clustering longitudinal gene expression data
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    Warren, Joshua L.
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3495 - 3506
  • [34] Dirichlet Gaussian mixture model: Application to image segmentation
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    IMAGE AND VISION COMPUTING, 2011, 29 (12) : 818 - 828
  • [35] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Dilan Görür
    Carl Edward Rasmussen
    Journal of Computer Science and Technology, 2010, 25 : 653 - 664
  • [36] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Goeruer, Dilan
    Rasmussen, Carl Edward
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (04) : 653 - 664
  • [37] Dirichlet Process Gaussian Mixture Models:Choice of the Base Distribution
    Dilan Grür
    Carl Edward Rasmussen
    Journal of Computer Science & Technology, 2010, 25 (04) : 653 - 664
  • [38] Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 18 - 32
  • [39] CONTEXT-AWARE PREFERENCE LEARNING SYSTEM BASED ON DIRICHLET PROCESS GAUSSIAN MIXTURE MODEL
    Xu, Xianbo
    van Erp, Bart
    Ignatenko, Tanya
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6805 - 6809
  • [40] Estimation of the Ambient Wind Field From Wind Turbine Measurements Using Gaussian Process Regression
    van der Hoek, Daan
    Sinner, Michael
    Simley, Eric
    Pao, Lucy
    van Wingerden, Jan-Willem
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 558 - 563