Quantum Goos-Hanchen Effect in Graphene

被引:222
|
作者
Beenakker, C. W. J. [1 ]
Sepkhanov, R. A. [1 ]
Akhmerov, A. R. [1 ]
Tworzydlo, J. [2 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[2] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland
关键词
REFLECTION; LIGHT;
D O I
10.1103/PhysRevLett.102.146804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Goos-Hanchen (GH) effect is an interference effect on total internal reflection at an interface, resulting in a shift sigma of the reflected beam along the interface. We show that the GH effect at a p-n interface in graphene depends on the pseudospin (sublattice) degree of freedom of the massless Dirac fermions, and find a sign change of sigma at angle of incidence alpha(*)=arcsin sin alpha(c) determined by the critical angle alpha(c) for total reflection. In an n-doped channel with p-doped boundaries the GH effect doubles the degeneracy of the lowest propagating mode, introducing a twofold degeneracy on top of the usual spin and valley degeneracies. This can be observed as a stepwise increase by 8e(2)/h of the conductance with increasing channel width.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Time-dependent Goos-Hanchen shifts in gapped graphene
    Lemaalem, Bouchaib
    Mekkaoui, Miloud
    Jellal, Ahmed
    Bahlouli, Hocine
    EPL, 2020, 129 (02)
  • [32] Guided modes and quantum Goos-Hanchen shift in graphene waveguide: Influence of a velocity barrier
    Wang, Y.
    Liu, Y.
    Wang, B.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 48 : 191 - 197
  • [33] Effect of magnetic field on Goos-Hanchen shifts in gaped graphene triangular barrier
    Mekkaoui, Miloud
    Jellal, Ahmed
    Bahlouli, Hocine
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 218 - 225
  • [34] Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene
    Wu, Zhenhua
    Zhai, F.
    Peeters, F. M.
    Xu, H. Q.
    Chang, Kai
    PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [35] GOOS-HANCHEN SHIFT ON A LAYER
    STRNAD, J
    KODRE, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 393 - 403
  • [36] Goos-Hanchen Shifts of Metal Layer and Quasicrystals with Monolayer Graphene
    Li Zhengyang
    Da Haixia
    Yan Xiaohong
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (09)
  • [37] The quaternionic Goos-Hanchen shift
    De Leo, Stefano
    Ducati, Gisele
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (09):
  • [38] Theory of giant Faraday rotation and Goos-Hanchen shift in graphene
    Martinez, J. C.
    Jalil, M. B. A.
    EPL, 2011, 96 (02)
  • [39] A spin beam splitter in graphene through the Goos-Hanchen shift
    Zhang, Qingtian
    Chan, K. S.
    APPLIED PHYSICS LETTERS, 2014, 105 (21)
  • [40] Controllable Goos-Hanchen shift in graphene triangular double barrier
    Mekkaoui, Miloud
    Jellala, Ahmed
    Bahlouli, Hocine
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 87 : 266 - 272