Mean free path and energy fluctuations in quantum chaotic billiards

被引:14
|
作者
Louis, E
Cuevas, E
Verges, JA
Otuno, M
机构
[1] UNIV MURCIA,DEPT FIS,E-30071 MURCIA,SPAIN
[2] CSIC,INST CIENCIA MAT,E-28049 MADRID,SPAIN
来源
PHYSICAL REVIEW B | 1997年 / 56卷 / 04期
关键词
D O I
10.1103/PhysRevB.56.2120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The elastic mean free path of carriers in a recently introduced model of quantum chaotic billiards in two and three dimensions is calculated The model incorporates surface roughness at a microscopic scale by randomly choosing the atomic levels at the surface sites between -W/2 and W/2. Surface roughness yields a mean free path l that decreases as L/W-2 as W increases, L being the linear system size. But this diminution ceases when the surface layer begins to decouple from the bulk for large enough values of W, leaving more or less unperturbed states on the bulk. Consequently, the mean free path shows a minimum of about L/2 for W of the order of the bandwidth. Energy fluctuations reflect the behavior of the mean free path. At small energy scales, strong level correlations manifest themselves by small values of Sigma(2)(E) that are close to random matrix theory (RMT) in all cases. At larger energy scales, fluctuations are below the logarithmic behavior of RMT for l>L, and above RMT value when l<L.
引用
收藏
页码:2120 / 2126
页数:7
相关论文
共 50 条
  • [21] Chaotic dynamics in billiards using Bohm's quantum mechanics
    Bonfim, OFD
    Florencio, J
    Barreto, FCS
    PHYSICAL REVIEW E, 1998, 58 (03): : R2693 - R2696
  • [22] Correlation decay in quantum chaotic billiards with bulk or surface disorder
    Louis, E
    Vergés, JA
    Cuevas, E
    PHYSICAL REVIEW E, 1999, 60 (01): : 391 - 397
  • [23] A new model of quantum chaotic billiards: Application to granular metals
    Louis, E
    Verges, JA
    Cuevas, E
    Ortuno, M
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02): : 297 - 304
  • [24] Quantum chaotic transport in ballistic Aharonov-Bohm billiards
    Kawabata, S
    Nakamura, K
    CHAOS SOLITONS & FRACTALS, 1997, 8 (7-8) : 1085 - 1098
  • [25] Chaotic dynamics in billiards using Bohm's quantum mechanics
    de Alcantara Bonfim, O.F.
    Florencio, J.
    Sa Barreto, F.C.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (3 -A):
  • [26] Density of proper delay times in chaotic and integrable quantum billiards
    Crawford, MGA
    Brouwer, PW
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026221
  • [27] Open chaotic Dirac billiards: Weak (anti)localization, conductance fluctuations, and decoherence
    Barros, M. S. M.
    Nascimento Junior, A. J.
    Macedo-Junior, A. F.
    Ramos, J. G. G. S.
    Barbosa, A. L. R.
    PHYSICAL REVIEW B, 2013, 88 (24):
  • [28] Is the mean free path the mean of a distribution?
    Paik, Steve T.
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (06) : 602 - 608
  • [29] Influence of Small-Angle Diffraction on the Ballistic Conductance Fluctuations in Chaotic Billiards
    Takane, Y.
    Nakamura, K.
    Journal of the Physical Society of Japan, 67 (02):
  • [30] MEAN FREE PATH OF HIGH-ENERGY NUCLEONS IN THE ATMOSPHERE
    FARROW, LA
    PHYSICAL REVIEW, 1957, 107 (06): : 1687 - 1694