D-modules on representations of Capelli type

被引:1
|
作者
Nang, Philibert [1 ,2 ]
机构
[1] ENS, Lab Rech & Math, BP 8637, Libreville, Gabon
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
D-modules; Holonomic V-modules; Invariant differential operators; Irreducible representations; Prehomogeneous vector spaces; Multiplicity-free spaces; Capelli identity; Representations of Capelli type; HOLONOMIC SYSTEMS; PERVERSE SHEAVES; DIFFERENTIAL-EQUATIONS; SPACES; CLASSIFICATION; SINGULARITIES;
D O I
10.1016/j.jalgebra.2016.12.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (G, V) be an irreducible multiplicity-free finite-dimensional representation of a connected reductive complex group G, as classified by V.G. Kac [17], and G' its derived subgroup. Denote by g the Lie algebra of G, and U(g) its universal enveloping algebra. Assume that there exists a polynomial f generating the algebra of G'-invariant polynomials on V (C[V](G') similar or equal to C[f]) and such that f is not an element of C[V]G. Such representations are said to be of Capelli type if the algebra of G-invariant differential operators is the image of the center of U(2) under the differential of the G-action. They fall into eight cases given by R. Howe and T. Umeda [14]: five infinite families and three "exceptional" examples. We prove that the category of regular holonomic D-v-modules invariant under the action of G' is equivalent to the category of graded modules of finite type over a suitable algebra A, except for few special cases. Indeed the Levasseur's conjecture [28, Conjecture 5.17, p. 508] fails in these cases because of the disconnectedness of the stabilizers of some "smaller" orbits. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:380 / 412
页数:33
相关论文
共 50 条
  • [21] Residues and filtered D-modules
    Christian Schnell
    Mathematische Annalen, 2012, 354 : 727 - 763
  • [22] MACRAE INVARIANT FOR D-MODULES
    NOUIMEHIDI, S
    JOURNAL OF ALGEBRA, 1995, 172 (03) : 624 - 639
  • [23] Dwork families and D-modules
    Dominguez, Alberto Castano
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1451 - 1484
  • [24] Mixed Twistor D-Modules
    Mochizuki, Takuro
    MIXED TWISTOR D-MODULES, 2015, 2125 : 169 - 194
  • [25] DIRECT IMAGES OF D-MODULES
    MALGRANGE, B
    MANUSCRIPTA MATHEMATICA, 1985, 50 (1-3) : 49 - 71
  • [26] Grassmann duality for D-modules
    Marastoni, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04): : 459 - 491
  • [27] A LOCALIZATION THEOREM FOR D-MODULES
    SAITO, M
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (02) : 213 - 234
  • [28] On irregular binomial D-modules
    María-Cruz Fernández-Fernández
    Francisco-Jesús Castro-Jiménez
    Mathematische Zeitschrift, 2012, 272 : 1321 - 1337
  • [29] Bivariate hypergeometric D-modules
    Dickenstein, A
    Matusevich, LF
    Sadykov, T
    ADVANCES IN MATHEMATICS, 2005, 196 (01) : 78 - 123
  • [30] MODULAR INVARIANT D-MODULES
    Ichikawa, Takashi
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (01) : 9 - 12