D-modules on representations of Capelli type

被引:1
|
作者
Nang, Philibert [1 ,2 ]
机构
[1] ENS, Lab Rech & Math, BP 8637, Libreville, Gabon
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
D-modules; Holonomic V-modules; Invariant differential operators; Irreducible representations; Prehomogeneous vector spaces; Multiplicity-free spaces; Capelli identity; Representations of Capelli type; HOLONOMIC SYSTEMS; PERVERSE SHEAVES; DIFFERENTIAL-EQUATIONS; SPACES; CLASSIFICATION; SINGULARITIES;
D O I
10.1016/j.jalgebra.2016.12.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (G, V) be an irreducible multiplicity-free finite-dimensional representation of a connected reductive complex group G, as classified by V.G. Kac [17], and G' its derived subgroup. Denote by g the Lie algebra of G, and U(g) its universal enveloping algebra. Assume that there exists a polynomial f generating the algebra of G'-invariant polynomials on V (C[V](G') similar or equal to C[f]) and such that f is not an element of C[V]G. Such representations are said to be of Capelli type if the algebra of G-invariant differential operators is the image of the center of U(2) under the differential of the G-action. They fall into eight cases given by R. Howe and T. Umeda [14]: five infinite families and three "exceptional" examples. We prove that the category of regular holonomic D-v-modules invariant under the action of G' is equivalent to the category of graded modules of finite type over a suitable algebra A, except for few special cases. Indeed the Levasseur's conjecture [28, Conjecture 5.17, p. 508] fails in these cases because of the disconnectedness of the stabilizers of some "smaller" orbits. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:380 / 412
页数:33
相关论文
共 50 条
  • [1] ALEXANDER MODULES AND D-MODULES
    SABBAH, C
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (03) : 729 - 814
  • [2] Crystals and D-Modules
    Gaitsgory, Dennis
    Rozenblyum, Nick
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2014, 10 (01) : 57 - 154
  • [3] Residues and D-modules
    Björk, JE
    LEGACY OF NIELS HENRIK ABEL, 2004, : 605 - 651
  • [4] Morsification of D-modules
    Tráng, LD
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (02): : 229 - 248
  • [5] D-MODULES ON SUPERMANIFOLDS
    PENKOV, IB
    INVENTIONES MATHEMATICAE, 1983, 71 (03) : 501 - 512
  • [6] Factorizable D-modules
    Khoroshkin, S
    Schechtman, V
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (2-3) : 239 - 257
  • [7] BINOMIAL D-MODULES
    Dickenstein, Alicia
    Matusevich, Laura Felicia
    Miller, Ezra
    DUKE MATHEMATICAL JOURNAL, 2010, 151 (03) : 385 - 429
  • [8] On Mirabolic D-modules
    Finkelberg, Michael
    Ginzburg, Victor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (15) : 2947 - 2986
  • [9] Cusps and D-modules
    Ben-Zvi, D
    Nevins, T
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) : 155 - 179
  • [10] Multidegree for bifiltered D-modules
    Arcadias, Remi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 280 - 295