Analysis of image-based phenotypic parameters for high throughput gene perturbation assays

被引:6
|
作者
Song, Mee [1 ]
Jeong, Euna [1 ]
Lee, Tae-Kyu [2 ]
Tsoy, Yury [3 ]
Kwon, Yong-Jun [2 ]
Yoon, Sukjoon [1 ,4 ]
机构
[1] Sookmyung Womens Univ, Ctr Adv Bioinformat & Syst Med, Seoul 140742, South Korea
[2] Inst Pasteur Korea, Discovery Biol Grp, Songnam 463400, Gyeonggi Do, South Korea
[3] Inst Pasteur Korea, Imaging Proc Platform, Songnam 463400, Gyeonggi Do, South Korea
[4] Sookmyung Womens Univ, Dept Biol Sci, Seoul 140742, South Korea
基金
新加坡国家研究基金会;
关键词
siRNA screening; Gene perturbation; Image-based assay; Phenotypic parameter; HUMAN-CELLS; RNAI; GENOME; MICROSCOPY; IDENTIFICATION; MIGRATION; SET;
D O I
10.1016/j.compbiolchem.2015.07.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although image-based phenotypic assays are considered a powerful tool for siRNA library screening, the reproducibility and biological implications of various image-based assays are not well-characterized in a systematic manner. Here, we compared the resolution of high throughput assays of image-based cell count and typical cell viability measures for cancer samples. It was found that the optimal plating density of cells was important to obtain maximal resolution in both types of assays. In general, cell counting provided better resolution than the cell viability measure in diverse batches of siRNAs. In addition to cell count, diverse image-based measures were simultaneously collected from a single screening and showed good reproducibility in repetitions. They were classified into a few functional categories according to biological process, based on the differential patterns of hit (i.e., siRNAs) prioritization from the same screening data. The presented systematic analyses of image-based parameters provide new insight to a multitude of applications and better biological interpretation of high content cell-based assays. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 198
页数:7
相关论文
共 50 条
  • [41] Medium-throughput image-based phenotypic siRNA screen to unveil the molecular basis of B cell polarization
    Obino, Dorian
    Maurin, Mathieu
    Dingli, Florent
    Loew, Damarys
    Lescure, Aurianne
    Terriac, Emmanuel
    Goudot, Christel
    Malbec, Odile
    Lankar, Danielle
    Yuseff, Maria-Isabel
    Lennon-Dumenil, Ana-Maria
    Moreau, Helene D.
    SCIENTIFIC DATA, 2023, 10 (01)
  • [42] The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping
    Zwanenburg, Alex
    Vallieres, Martin
    Abdalah, Mahmoud A.
    Aerts, Hugo J. W. L.
    Andrearczyk, Vincent
    Apte, Aditya
    Ashrafinia, Saeed
    Bakas, Spyridon
    Beukinga, Roeloff
    Boellaard, Ronald
    Bogowicz, Marta
    Boldrini, Luca
    Buvat, Irene
    Cook, Gary J. R.
    Davatzikos, Christos
    Depeursinge, Adrien
    Desseroit, Marie-Charlotte
    Dinapoli, Nicola
    Cuong Viet Dinh
    Echegaray, Sebastian
    El Naqa, Issam
    Fedorov, Andriy Y.
    Gatta, Roberto
    Gillies, Robert J.
    Goh, Vicky
    Goetz, Michael
    Guckenberger, Matthias
    Ha, Sung Min
    Hatt, Mathieu
    Isensee, Fabian
    Lambin, Philippe
    Leger, Stefan
    Leijenaar, Ralph T. H.
    Lenkowicz, Jacopo
    Lippert, Fiona
    Losnegard, Are
    Maier-Hein, Klaus H.
    Morin, Olivier
    Mueller, Henning
    Napel, Sandy
    Nioche, Christophe
    Orlhac, Fanny
    Pati, Sarthak
    Pfaehler, Elisabeth A. G.
    Rahmim, Arman
    Rao, Arvind U. K.
    Scherer, Jonas
    Siddique, Muhammad Musib
    Sijtsema, Nanna M.
    Fernandez, Jairo Socarras
    RADIOLOGY, 2020, 295 (02) : 328 - 338
  • [43] Quantitative, Image-Based Assays for the Functional Evaluation of RNA and Gene Therapies Targeting Muscle Disorders
    Darimont, Beatrice
    Lorintiu, Oana
    Gaston, Cecile
    Flaender, Melanie
    Champetier, Tiphaine
    Martin, Antoine
    Morrozi, Giulio
    Duchemin-Pelletier, Eve
    Chapuis-Perrot, Violaine
    Massera, Celine
    Griveau, Louise
    Papin, Margaux
    Roelants, Caroline
    Dupont, Aurelie
    Poydenot, Pauline
    Young, Joanne
    Ventre, Erwann
    Selig, Luc
    MOLECULAR THERAPY, 2023, 31 (04) : 427 - 427
  • [44] High-throughput, image-based screening of pooled genetic-variant libraries
    George Emanuel
    Jeffrey R Moffitt
    Xiaowei Zhuang
    Nature Methods, 2017, 14 : 1159 - 1162
  • [45] Development of epitope barcoding for high-throughput image-based genetic screening.
    Kudo, T.
    Covert, M. W.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [46] High-Throughput Image-Based Assay for Identifying In Vitro Hepatocyte Microtubule Disruption
    Li, Yang
    Bowling, Andrew J.
    Lehman, Audrey
    Johnson, Kristina
    Pence, Heather E.
    Breitweiser, Lori A.
    Sherer, Eric
    Larocca, Jessica
    Chen, Wei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (39) : 21804 - 21819
  • [47] High-throughput, image-based screening of pooled genetic-variant libraries
    Emanuel, George
    Moffitt, Jeffrey R.
    Zhuang, Xiaowei
    NATURE METHODS, 2017, 14 (12) : 1159 - +
  • [48] Resources for image-based high-throughput phenotyping in crops and data sharing challenges
    Danilevicz, Monica F.
    Bayer, Philipp E.
    Nestor, Benjamin J.
    Bennamoun, Mohammed
    Edwards, David
    PLANT PHYSIOLOGY, 2021, 187 (02) : 699 - 715
  • [49] Small molecule regulators of autophagy identified by an image-based high-throughput screen
    Zhang, Lihong
    Yu, Jia
    Pan, Heling
    Hu, Ping
    Hao, Yan
    Cai, Wenqing
    Zhu, Hong
    Yu, Albert D.
    Xie, Xin
    Ma, Dawei
    Yuan, Junying
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) : 19023 - 19028
  • [50] Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review
    Jiang, Yu
    Li, Changying
    PLANT PHENOMICS, 2020, 2020