A numerical study on exceptional eigenvalues of certain congruence subgroups of SO(n, 1) and SU(n, 1)

被引:0
|
作者
Lauret, Emilio A. [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM, RA-5000 Cordoba, Argentina
来源
RAMANUJAN JOURNAL | 2014年 / 35卷 / 02期
关键词
Exceptional eigenvalues; Selberg's eigenvalue conjecture; Lattice point theorem; Unit group of quadratic forms; LATTICE POINTS; KLOOSTERMAN SUMS; FORMULA; REPRESENTATIONS; INTEGERS; NUMBER;
D O I
10.1007/s11139-014-9590-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous work, we applied lattice point theorems on hyperbolic spaces to obtain asymptotic formulas for the number of integral representations of negative integers by quadratic and Hermitian forms of signature (n, 1) lying in Euclidean balls of increasing radius. That formula involved an error term that depended on the first nonzero eigenvalue of the Laplace-Beltrami operator on the corresponding congruence hyperbolic manifolds. The aim of this paper is to compare the error term obtained by experimental computations with the error term mentioned above, for several choices of quadratic and Hermitian forms. Our numerical results provide evidence of the existence of exceptional eigenvalues for some arithmetic subgroups of SU(3, 1), SU(4, 1), and SU(5, 1), and thus they contradict the generalized Selberg (and Ramanujan) conjecture in these cases. Furthermore, for several arithmetic subgroups of SO(4, 1), SO(6, 1), SO(8, 1), and SU(2, 1), there is evidence of a lower bound on the first nonzero eigenvalue that is better than the already known lower bound for congruences subgroups.
引用
收藏
页码:179 / 204
页数:26
相关论文
共 50 条
  • [21] SO(2N) and SU(N) gauge theories in 2+1 dimensions
    Bursa, Francis
    Lau, Richard
    Teper, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [22] Deformations of N=2 dualities to N=1 dualities in SU, SO and USp gauge theories
    Hirayama, T
    Maekawa, N
    Sugimoto, S
    PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (05): : 843 - 873
  • [23] Contractions of SU(1, n) and SU(n+1) via Berezin quantization
    Cahen, Benjamin
    JOURNAL D ANALYSE MATHEMATIQUE, 2005, 97 (1): : 83 - 101
  • [24] On the weak N-dependence of SO(N) and SU(N) gauge theories in 2+1 dimensions
    Athenodorou, Andreas
    Lau, Richard
    Teper, Michael
    PHYSICS LETTERS B, 2015, 749 : 448 - 453
  • [25] SO(2N+1) IN AN SO(2N-3) AND SU(2) AND SU(2) BASIS .2. DETAILED STUDY OF THE SYMMETRIC REPRESENTATIONS OF THE SO(7) GROUP
    VANDENBERGHE, G
    DEMEYER, H
    DEWILDE, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09): : 2677 - 2686
  • [26] Locally smooth SU(n + 1)-actions on SU(n + 1)/S(U(n - 1) × U(2)) are unique
    V. Hauschild
    Transformation Groups, 2006, 11 : 77 - 86
  • [27] SU(N,1) INFLATION
    ELLIS, J
    ENQVIST, K
    NANOPOULOS, DV
    OLIVE, KA
    SREDNICKI, M
    PHYSICS LETTERS B, 1985, 152 (3-4) : 175 - 180
  • [28] COHERENT STATES RELATED WITH SU(N) AND SU(N,1) GROUPS
    GITMAN, DM
    SHELEPIN, AL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (01): : 83 - 89
  • [30] NEW HIERARCHY IN GUTS BASED ON SU(N,1)/SU(N)XU(1) SUGRA
    HAYASHI, MJ
    MURAYAMA, A
    PHYSICS LETTERS B, 1985, 163 (1-4) : 140 - 142