Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions

被引:3
|
作者
Uvarov, V. M. [1 ]
Lukianova, R. Yu [2 ,3 ]
机构
[1] State Transport Univ, St Petersburg 190031, Russia
[2] Russian Acad Sci, Geophys Ctr, 3 Molodezhnaya Str, Moscow 119296, Russia
[3] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
基金
芬兰科学院;
关键词
High latitude ionosphere F region; Electron concentration; Plasma convection; Solar wind; Modeling; FIELD-ALIGNED CURRENTS; ELECTRIC-FIELD; EARTHS IONOSPHERE; HIGH-LATITUDES; GLOBAL-MODEL; CONVECTION; SIMULATION; SATELLITE; NORTHERN; DYNAMO;
D O I
10.1016/j.asr.2015.10.004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The numerical model predicts the 3-D distribution of electron density over the high-latitude F region ionosphere in the altitudes between 130 and 600 km. The distinctive feature of the model is an analytical representation of the electric potential distribution over the high-latitude ionospheric shell which continuously evolving with the solar wind parameters, season and universal time. In this approach the convection electric field is directly related to the field-aligned currents of magnetospheric origin which are controlled by the solar wind. The time-dependent ion continuity and momentum equations are solved as a function of altitude within a convecting and corotating plasma flux tube. Modeling results show that the polar ionosphere F region responds strongly to the change in the IMF polarity and the solar zenith angle. Large-scale ionospheric irregularities are reproduced in details. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2563 / 2574
页数:12
相关论文
共 50 条
  • [21] NEUTRAL WIND EFFECTS ON THE EQUATORIAL F-REGION IONOSPHERE
    ANDERSON, DN
    ROBLE, RG
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1981, 43 (08): : 835 - 843
  • [22] Numerical Modeling of the Solar Wind Turbulence
    Kryukov, I. A.
    Pogorelov, N. V.
    Zank, G. P.
    Borovikov, S. N.
    PHYSICS OF THE HELIOSPHERE: A 10 YEAR RETROSPECTIVE, 2012, 1436 : 48 - 54
  • [23] Generation mechanism of Region 1 field-aligned current and energy transfer from solar wind to polar ionosphere
    Ebihara, Yusuke
    Tanaka, Takashi
    REVIEWS OF MODERN PLASMA PHYSICS, 2024, 8 (01)
  • [24] GPS TEC variations in the polar cap ionosphere: Solar wind and IMF dependence
    Watson, Chris
    Jayachandran, P. T.
    MacDougall, John W.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (09) : 9030 - 9050
  • [25] Statistical Modeling of the Coupled F-Region Ionosphere-Thermosphere at High Latitude During Polar Darkness
    Dorrian, G. D.
    Wood, A. G.
    Ronksley, A.
    Aruliah, A.
    Shahtahmassebi, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (02) : 1389 - 1409
  • [26] Alfven wave signatures in the polar ionosphere induced by a solar wind pressure pulse
    Marcucci, MF
    Amata, E
    Candidi, M
    PROCEEDINGS OF THE 9TH GIFCO CONFERENCE WHAT ARE THE PROSPECTS FOR COSMIC PHYSICS IN ITALY?, 2000, 68 : 321 - 324
  • [27] NUMERICAL MODELING OF THE NUCLEAR WINTER TAKING INTO ACCOUNT AEROSOL SPREADING
    STENCHIKOV, GL
    DOKLADY AKADEMII NAUK SSSR, 1986, 287 (03): : 598 - 602
  • [28] Polar and high latitude substorms and solar wind conditions
    Despirak, I. V.
    Lyubchich, A. A.
    Kleimenova, N. G.
    GEOMAGNETISM AND AERONOMY, 2014, 54 (05) : 575 - 582
  • [29] Polar and high latitude substorms and solar wind conditions
    I. V. Despirak
    A. A. Lyubchich
    N. G. Kleimenova
    Geomagnetism and Aeronomy, 2014, 54 : 575 - 582
  • [30] Modeling solar zenith angle effects on the polar wind
    Glocer, A.
    Kitamura, N.
    Toth, G.
    Gombosi, T.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117