On approximation of functions from the class Lβ,1ψ by the Abel-Poisson integrals in the integral metric

被引:14
|
作者
Zhyhallo, T., V [1 ]
Kharkevych, Yu, I [1 ]
机构
[1] Lesya Ukrainka Volyn Natl Univ, Lutsk, Ukraine
关键词
Kolmogorov-Nikol'skii problem; Abel-Poisson integral; (psi; beta)-differentiable function; asymptotic equality; integral metric; ASYMPTOTICS;
D O I
10.15330/cmp.14.1.223-229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we investigate an asymptotic behavior of the sharp upper bounds in the integral metric of deviations of the Abel-Poisson integrals from functions from the class L-beta,1(psi). The Abel-Poisson integrals are solutions of the partial differential equations of elliptic type with corresponding boundary conditions, and they play an important role in applied problems. The approximative properties of the Abel-Poisson integrals on different classes of differentiable functions were studied in a number of papers. Nevertheless, a problem on the respective approximation on the classes L-beta,1(psi) in the metric of the space L remained unsolved. We managed to obtain the estimates for the values of approximation of (psi, beta)-differentiable functions from the unit ball of the space L by the AbelPoisson integrals. In some cases, we also write down asymptotic equalities for these quantities, that is we solve the Kolmogorov-Nikol'skii problem for the the Abel-Poisson integrals on the classes L-beta,1(psi) in the integral metric.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 50 条
  • [21] Estimate of the rate of approximation by images of operators of Abel-Poisson type of some special classes of functions
    Poddubnyi A.M.
    Journal of Automation and Information Sciences, 2019, 51 (06) : 38 - 53
  • [22] On the approximation of functions of the holder class by triharmonic poisson integrals
    Zhyhallo K.M.
    Kharkevych Yu.I.
    Ukrainian Mathematical Journal, 2001, 53 (6) : 1012 - 1018
  • [23] On the approximation of functions of the Holder class by biharmonic Poisson integrals
    Zhigallo K.M.
    Kharkevych Yu.I.
    Ukrainian Mathematical Journal, 2000, 52 (7) : 1113 - 1117
  • [24] Approximation of Bounded p-variation Periodic Functions by Generalized Abel-Poisson and Logarithmic Means
    Tyuleneva, A. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 27 - 32
  • [25] Regional gravity field modeling with Abel-Poisson radial basis functions
    Ma Z.
    Lu Y.
    Tu Y.
    Zhu C.
    Xi H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2016, 45 (09): : 1019 - 1027
  • [26] Approximation of functions from Ho<spacing diaeresis>lder class by biharmonic Poisson integrals
    Kharkevych, Yu. I.
    Shutovskyi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 631 - 637
  • [27] On Approximation of Functions by Generalized Abel–Poisson Operators
    L. P. Falaleev
    Siberian Mathematical Journal, 2001, 42 : 779 - 788
  • [28] APPROXIMATION OF FUNCTIONS FROM THE CLASSES Cβ,∞ψ BY BIHARMONIC POISSON INTEGRALS
    Zhyhallo, K. M.
    Kharkevych, Yu. I.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (07) : 1083 - 1107
  • [29] ASYMPTOTICS OF APPROXIMATION OF FUNCTIONS BY CONJUGATE POISSON INTEGRALS
    Kal'chuk, I., V
    Kharkevych, Yu, I
    Pozharska, K., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 138 - 147
  • [30] Asymptotics of approximation of conjugate functions by Poisson integrals
    Kharkevych, Yu. I.
    Pozharska, K. V.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (02): : 235 - 243