Validity of an Automated Algorithm to Identify Cirrhosis Using Electronic Health Records in Patients with Primary Biliary Cholangitis

被引:5
|
作者
Lu, Mei [1 ]
Bowlus, Christopher L. [2 ]
Lindor, Keith [3 ]
Rodriguez-Watson, Carla, V [4 ,5 ]
Romanelli, Robert J. [6 ]
Haller, Irina, V [7 ]
Anderson, Heather [8 ]
VanWormer, Jeffrey J. [9 ]
Boscarino, Joseph A. [10 ]
Schmidt, Mark A. [11 ]
Daida, Yihe G. [12 ]
Sahota, Amandeep [13 ]
Vincent, Jennifer [14 ]
Li, Jia [1 ]
Trudeau, Sheri [1 ]
Rupp, Loralee B. [15 ]
Gordon, Stuart C. [16 ,17 ]
机构
[1] Henry Ford Hlth Syst, Dept Publ Hlth Sci, 3E One Ford Pl, Detroit, MI 48202 USA
[2] Univ Calif Davis, Sch Med, Sacramento, CA 95817 USA
[3] Arizona State Univ, Coll Hlth Solut, Phoenix, AZ USA
[4] Kaiser Permanente Midatlantic Res Inst, Ctr Hlth Res, Rockville, MD USA
[5] Reagan Udall Fdn FDA, Washington, DC USA
[6] Palo Alto Med Fdn, Res Inst, Palo Alto, CA 94301 USA
[7] Essentia Hlth, Essentia Inst Rural Hlth, Duluth, MN USA
[8] Univ Colorado, Skaggs Sch Pharm & Pharmaceut Sci, Anschutz Med Campus, Aurora, CO USA
[9] Marshfield Clin Res Fdn, Marshfield, WI USA
[10] Geisinger Med Clin, Dept Populat Hlth Sci, Danville, PA USA
[11] Kaiser Permanente Northwest, Ctr Hlth Res, Portland, OR USA
[12] Kaiser Permanente Hawaii, Ctr Integrated Hlth Care Res, Honolulu, HI USA
[13] Kaiser Permanente Southern Calif, Dept Res & Evaluat, Los Angeles, CA USA
[14] Baylor Scott & White Res Inst, Temple, TX USA
[15] Henry Ford Hlth Syst, Ctr Hlth Policy & Hlth Serv Res, Detroit, MI USA
[16] Henry Ford Hlth Syst, Div Gastroenterol & Hepatol, Detroit, MI 48202 USA
[17] Wayne State Univ, Sch Med, Detroit, MI USA
来源
CLINICAL EPIDEMIOLOGY | 2020年 / 12卷
关键词
primary biliary cirrhosis; cholangitis; race/gender/ethnicity; gender; ethnicity; decompensated cirrhosis; ursodeoxycholic acid; UCDA;
D O I
10.2147/CLEP.S262558
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Biopsy remains the gold standard for determining fibrosis stage in patients with primary biliary cholangitis (PBC), but it is unavailable for most patients. We used data from the 11 US health systems in the FibrOtic Liver Disease Consortium to explore a combination of biochemical markers and electronic health record (EHR)-based diagnosis/procedure codes (DPCs) to identify the presence of cirrhosis in PBC patients. Methods: Histological fibrosis staging data were obtained from liver biopsies. Variables considered for the model included demographics (age, gender, race, ethnicity), total bilirubin, alkaline phosphatase, albumin, aspartate aminotransferase (AST) to platelet ratio index (APRI), Fibrosis 4 (FIB4) index, AST to alanine aminotransferase (ALT) ratio, and >100 DPCs associated with cirrhosis/decompensated cirrhosis, categorized into ten clusters. Using least absolute shrinkage and selection operator regression (LASSO), we derived and validated cutoffs for identifying cirrhosis. Results: Among 4328 PBC patients, 1350 (32%) had biopsy data; 121 (9%) were staged F4 (cirrhosis). DPC clusters (including codes related to cirrhosis and hepatocellular carcinoma diagnoses/procedures), Hispanic ethnicity, ALP, AST/ALT ratio, and total bilirubin were retained in the final model (AUROC=0.86 and 0.83 on learning and testing data, respectively); this model with two cutoffs divided patients into three categories (no cirrhosis, indeterminate, and cirrhosis) with specificities of 81.8% (for no cirrhosis) and 80.3% (for cirrhosis). A model excluding DPCs retained ALP, AST/ALT ratio, total bilirubin, Hispanic ethnicity, and gender (AUROC=0.81 and 0.78 on learning and testing data, respectively). Conclusion: An algorithm using laboratory results and DPCs can categorize a majority of PBC patients as cirrhotic or noncirrhotic with high accuracy (with a small remaining group of patients' cirrhosis status indeterminate). In the absence of biopsy data, this EHR-based model can be used to identify cirrhosis in cohorts of PBC patients for research and/or clinical follow-up.
引用
收藏
页码:1261 / 1267
页数:7
相关论文
共 50 条
  • [21] Development and Validation of an Algorithm to Accurately Identify Atopic Eczema Patients in Primary Care Electronic Health Records from the UK
    Abuabara, Katrina
    Magyari, Alexa M.
    Hoffstad, Ole
    Jabbar-Lopez, Zarif K.
    Smeeth, Liam
    Williams, Hywel C.
    Gelfand, Joel M.
    Margolis, David J.
    Langan, Sinead M.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (08) : 1655 - 1662
  • [22] Identification of patients with epilepsy using automated electronic health records phenotyping
    Fernandes, Marta
    Cardall, Aidan
    Jing, Jin
    Ge, Wendong
    Moura, Lidia M. V. R.
    Jacobs, Claire
    McGraw, Christopher
    Zafar, Sahar F.
    Westover, M. Brandon
    EPILEPSIA, 2023, 64 (06) : 1472 - 1481
  • [23] Portability of an algorithm to identify rheumatoid arthritis in electronic health records
    Carroll, Robert J.
    Thompson, Will K.
    Eyler, Anne E.
    Mandelin, Arthur M.
    Cai, Tianxi
    Zink, Raquel M.
    Pacheco, Jennifer A.
    Boomershine, Chad S.
    Lasko, Thomas A.
    Xu, Hua
    Karlson, Elizabeth W.
    Perez, Raul G.
    Gainer, Vivian S.
    Murphy, Shawn N.
    Ruderman, Eric M.
    Pope, Richard M.
    Plenge, Robert M.
    Kho, Abel Ngo
    Liao, Katherine P.
    Denny, Joshua C.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (E1) : E162 - E169
  • [24] Cardiac morphology and function in patients with primary biliary cholangitis (PBC) without cirrhosis
    Bidiuk, J.
    Szmigielski, C.
    Lewandowski, J.
    Sinski, M.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [25] Novel insights in primary biliary cholangitis (PBC) epidemiology using administrative records
    Gerussi, A.
    Manno, V.
    Carbone, M.
    Minelli, G.
    Taruscio, D.
    Conti, S.
    Invernizzi, P.
    DIGESTIVE AND LIVER DISEASE, 2019, 51 : E3 - E4
  • [26] Using Electronic Health Records To Identify Patients With Apparent Treatment Resistant Hypertension
    Solanki, Priyanka
    Ajmal, Imran
    Ding, Xiruo
    Cohen, Jordana
    Cohen, Debbie
    Herman, Daniel
    HYPERTENSION, 2020, 76
  • [27] Validity of Diagnosis Codes to Identify a Dermatomyositis Cohort from Electronic Health Records
    Silberzweig, Alex
    Strunk, Andrew
    Flatley, Elizabeth
    Fernandez, Anthony P.
    Garg, Amit
    DERMATOLOGY, 2025,
  • [28] Validating An Automated Algorithm To Identify Outpatient Treated COPD Exacerbations Using Electronic Medical Records Data
    Ko, S.
    Greif, S.
    Lee, J. S.
    Liu, A.
    Desai, S. A.
    Harrington, A.
    Lee, S. M.
    Moy, M. L.
    Fan, V. S.
    Gould, M. K.
    Nguyen, H. Q.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193
  • [29] Development of an Algorithm to Identify Patients With Hypereosinophilic Syndrome (HES) in Claims Data and Electronic Health Records
    Pongdee, Thanai
    Walker, Valery
    Engel-Nitz, Nicole
    Johnson, Jonathan
    Rothenberg, Marc
    Edgecomb, Amy
    Ahmed, Waseem
    Hwee, Jeremiah
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2025, 155 (02) : AB431 - AB431
  • [30] Monitoring Suicidal Patients in Primary Care Using Electronic Health Records
    Anderson, Heather D.
    Pace, Wilson D.
    Brandt, Elias
    Nielsen, Rodney D.
    Allen, Richard R.
    Libby, Anne M.
    West, David R.
    Valuck, Robert J.
    JOURNAL OF THE AMERICAN BOARD OF FAMILY MEDICINE, 2015, 28 (01) : 65 - 71