INVARIANT SUBMANIFOLDS OF N(k)-CONTACT METRIC MANIFOLDS WITH GENERALIZED TANAKA WEBSTER CONNECTION

被引:0
|
作者
Kumari, Dipansha
Nagaraja, H. G. [1 ]
Kumar, D. L. Kiran [2 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, India
[2] Rv Coll Engn, Dept Math, Bengaluru, India
来源
关键词
Invariant submanifolds; N(k)-contact metric manifold; Generalized Tanaka-Webster connection; REAL HYPERSURFACES; SPACE;
D O I
10.14317/jami.2022.741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The object of the present paper is to study some geometric properties of invariant submanifolds of N(k)-contact metric manifold admitting generalized Tanaka-Webster connection.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 50 条
  • [41] Minimality of invariant submanifolds in metric contact pair geometry
    Bande, Gianluca
    Hadjar, Amine
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) : 1107 - 1122
  • [42] On ξ-Conformally and ξ-Pseudo Projectively Flat Lorentzian Sasakian Manifolds with Tanaka-Webster Connection
    Erdogan, Mehmet
    Alo, Jeta
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 13 - 19
  • [43] SOME NEW RESULTS ON REAL HYPERSURFACES WITH GENERALIZED TANAKA-WEBSTER CONNECTION
    Wang, Wenjie
    Liu, Ximin
    MATHEMATICA SLOVACA, 2019, 69 (03) : 665 - 674
  • [44] CERTAIN CURVATURE CONDITIONS ON N(K)-CONTACT METRIC MANIFOLDS WITH RESPECT TO SEMI-SYMMETRIC NON-METRIC CONNECTION
    Tripathi, Gajendra Nath
    Rastogi, Rati
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2020, 19 (1-2): : 69 - 80
  • [45] Semi-invariant submanifolds of K-manifolds
    Di Terlizzi, Luigia
    Verroca, Francesca
    Wolak, Robert A.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 89 - 106
  • [46] OPTIMAL INEQUALITIES FOR CONTACT CR-SUBMANIFOLDS IN ALMOST CONTACT METRIC MANIFOLDS
    Olteanu, Andreea
    MATHEMATICA SLOVACA, 2021, 71 (02) : 513 - 521
  • [47] PSEUDOPARALLEL INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS
    Atceken, Mehmet
    Yildirim, Umit
    Dirik, Suleyman
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (02): : 275 - 284
  • [48] On (k, mu)-Contact Metric Manifolds
    Sarkar, Avijit
    Sen, Matilal
    THAI JOURNAL OF MATHEMATICS, 2011, 9 (03): : 585 - 596
  • [49] ON φ-RECURRENT (k, μ)-CONTACT METRIC MANIFOLDS
    Jun, Jae-Bok
    Yildiz, Ahmet
    De, Uday Chand
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) : 689 - 700
  • [50] SOME CLASSES OF INVARIANT SUBMANIFOLDS OF (LCS)(n)-MANIFOLDS
    Hui, S. K.
    Mishra, Vishnu Narayan
    Pal, T.
    Vandana
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 359 - 372