Optimization of electric discharge machining using simulated annealing

被引:71
|
作者
Yang, Seung-Han [1 ]
Srinivas, J. [1 ]
Mohan, Sekar [1 ]
Lee, Dong-Mok [1 ]
Balaji, Sree [2 ]
机构
[1] Kyungpook Natl Univ, Sch Mech Engn, Taegu 702701, South Korea
[2] SCSVMV Deemed Univ, Kanchipuram 631561, India
关键词
Electro-discharge machining; Modeling; Process parameters; Neural networks; Optimization; SORTING GENETIC ALGORITHM; MULTIOBJECTIVE OPTIMIZATION; EDM;
D O I
10.1016/j.jmatprotec.2008.10.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes an optimization methodology for the selection of best process parameters in electro-discharge machining. Regular cutting experiments are carried out on die-sinking machine under different conditions of process parameters. The system model is created using counter-propagation neural network using experimental data. This system model is employed to simultaneously maximize the material removal rate as well as minimize the surface roughness using simulated annealing scheme. Finally consistency of the method is tested with several initial trail values. Results are shown in the form of tables and figures. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4471 / 4475
页数:5
相关论文
共 50 条
  • [41] Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials
    Tien-Long Banh
    Huu-Phan Nguyen
    Cuong Ngo
    Duc-Toan Nguyen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2018, 232 (03) : 281 - 298
  • [42] Two-step optimization of electric discharge machining using neural network based approach and TOPSIS
    Bharti, Pushpendra S.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (01) : 81 - 96
  • [43] Optimization of Electric Discharge Machining Process Parameters for H13 Steel by Using Taguchi Method
    Ghayatadak, Mahendra M.
    Bhandare, Amar S.
    ADVANCES IN INDUSTRIAL AND PRODUCTION ENGINEERING, 2019, : 525 - 534
  • [44] Optimization of electric discharge machining of M2 tool steel using grey relational analysis
    Purohit, Rajesh
    Rana, R. S.
    Dwivedi, R. K.
    Banoriya, Deepen
    Singh, Swadesh Kumar
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (4-5) : 3378 - 3387
  • [45] Optimization of Cognitive Radio System Using Simulated Annealing
    Kiranjot Kaur
    Munish Rattan
    Manjeet Singh Patterh
    Wireless Personal Communications, 2013, 71 : 1283 - 1296
  • [46] Optimization of Cognitive Radio System Using Simulated Annealing
    Kaur, Kiranjot
    Rattan, Munish
    Patterh, Manjeet Singh
    WIRELESS PERSONAL COMMUNICATIONS, 2013, 71 (02) : 1283 - 1296
  • [47] Noise barrier optimization using a simulated annealing algorithm
    Mun, Sungho
    Cho, Yoon-Ho
    APPLIED ACOUSTICS, 2009, 70 (08) : 1094 - 1098
  • [48] Thermodynamic calculations using a simulated annealing optimization algorithm
    Bonilla-Petriciolet, Adrian
    Segovia-Hernandez, Juan Gabriel
    Castillo-Borja, Florianne
    Bravo-Sanchez, Ulises Ivan
    REVISTA DE CHIMIE, 2007, 58 (04): : 369 - 378
  • [49] TOPOLOGICAL OPTIMIZATION OF TRUSS STRUCTURES USING SIMULATED ANNEALING
    DHINGRA, AK
    BENNAGE, WA
    ENGINEERING OPTIMIZATION, 1995, 24 (04) : 239 - 259
  • [50] OPTIMIZATION OF SIGNAL DISTRIBUTION NETWORKS USING SIMULATED ANNEALING
    WAYMAN, JL
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1992, 40 (03) : 465 - 471