Numerical solutions of the reaction diffusion system by using exponential cubic B-spline collocation algorithms

被引:32
|
作者
Ersoy, Ozlem [1 ]
Dag, Idris [1 ]
机构
[1] Eskisehir Osmangazi Univ, Math Comp Dept, TR-26480 Eskisehir, Turkey
来源
OPEN PHYSICS | 2015年 / 13卷 / 01期
关键词
finite element method; collocation method; reaction-diffusion equations; exponential cubic B-spline; nonlinear differential equation;
D O I
10.1515/phys-2015-0047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The solutions of the reaction-diffusion system are given by method of collocation based on the exponential B-splines. Thus the reaction-diffusion system turns into an iterative banded algebraic matrix equation. Solution of the matrix equation is carried out byway of Thomas algorithm. The present methods test on both linear and nonlinear problems. The results are documented to compare with some earlier studies by use of L-infinity and relative error norm for problems respectively.
引用
收藏
页码:414 / 427
页数:14
相关论文
共 50 条
  • [21] B-spline collocation methods for numerical solutions of the RLW equation
    Dag, I
    Dogan, A
    Saka, B
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (06) : 743 - 757
  • [22] B-spline collocation methods for numerical solutions of the Burgers' equation
    Dag, I
    Irk, D
    Sahin, A
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2005, (05) : 521 - 538
  • [23] Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
    Dwivedi, Kushal Dhar
    Das, Subir
    Rajeev
    Baleanu, Dumitru
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (7-8) : 1157 - 1172
  • [24] The numerical study of advection–diffusion equations by the fourth-order cubic B-spline collocation method
    R. C. Mittal
    Rajni Rohila
    Mathematical Sciences, 2020, 14 : 409 - 423
  • [25] Numerical investigation of the solutions of Schrodinger equation with exponential cubic B-spline finite element method
    Hepson, Ozlem Ersoy
    Dag, Idris
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (02) : 119 - 133
  • [26] Quartic B-spline collocation algorithms for numerical solution of the RLW equation
    Saka, Bulent
    Dag, Idris
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (03) : 731 - 751
  • [27] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Xiaogang Zhu
    Yufeng Nie
    Zhanbin Yuan
    Jungang Wang
    Zongze Yang
    Advances in Difference Equations, 2017
  • [28] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Zhu, Xiaogang
    Nie, Yufeng
    Yuan, Zhanbin
    Wang, Jungang
    Yang, Zongze
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [29] Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method
    Li, Xinxiu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (10) : 3934 - 3946
  • [30] Numerical treatment of Hunter Saxton equation using cubic trigonometric B-spline collocation method
    Hashmi, M. S.
    Awais, Muhammad
    Waheed, Ammarah
    Ali, Qutab
    AIP ADVANCES, 2017, 7 (09):