PULLBACK ATTRACTORS FOR NON-AUTONOMOUS EVOLUTION EQUATIONS WITH SPATIALLY VARIABLE EXPONENTS

被引:27
|
作者
Kloeden, Peter E. [1 ,2 ]
Simsen, Jacson [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[3] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
关键词
Non-autonomous parabolic problems; variable exponents; pullback attractors; upper semicontinuity; UPPER SEMICONTINUITY; PARABOLIC EQUATIONS; EXISTENCE; BEHAVIOR; FLOW;
D O I
10.3934/cpaa.2014.13.2543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dissipative problems in electrorheological fluids, porous media and image processing often involve spatially dependent exponents. They also include time-dependent terms as in equation partial derivative u lambda/partial derivative t (t) - div (D-lambda (t)vertical bar del u(lambda)(t)vertical bar(p(x)-2)del u(lambda)(t)) + vertical bar u(lambda)(t)vertical bar(p(x)-2)u(lambda)(t) - B(t, u(lambda)(t)) on a bounded smooth domain Omega in R-n, n >= 1, with a homogeneous Neumann boundary condition, where the exponent p(.) is an element of C((Omega) over bar, R+) satisfying p(-) := min p(x) > 2, and lambda is an element of [0, infinity) is a parameter. The existence and upper semicontinuity of pullback attractors are established for this equation under the assumptions, amongst others, that B is globally Lipschitz in its second variable and D-lambda is an element of L-infinity ([tau, T] x Omega, R+) is bounded from above and below, is monotonically nonincreasing in time and continuous in the parameter lambda. The global existence and uniqueness of strong solutions is obtained through results of Yotsutani.
引用
收藏
页码:2543 / 2557
页数:15
相关论文
共 50 条
  • [31] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    Sun, Wenlong
    Li, Yeping
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1370 - 1392
  • [32] PULLBACK ATTRACTORS FOR NON-AUTONOMOUS MGT-FOURIER SYSTEM
    Wang, Yang
    Wu, Jihui
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025, 14 (03): : 564 - 579
  • [33] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS
    Bezerra, Flank D. M.
    Carbone, Vera L.
    Nascimento, Marcelo J. D.
    Schiabel, Karina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3553 - 3571
  • [34] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    孙文龙
    黎野平
    Acta Mathematica Scientia(English Series), 2018, 38 (04) : 1370 - 1392
  • [35] NON-AUTONOMOUS ATTRACTORS FOR INTEGRO-DIFFERENTIAL EVOLUTION EQUATIONS
    Caraballo, T.
    Kloeden, P. E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01): : 17 - 36
  • [36] Pullback attractors for asymptotically compact non-autonomous dynamical systems
    Caraballo, T
    Lukaszewicz, G
    Real, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) : 484 - 498
  • [37] Pullback attractors for a non-autonomous incompressible non-Newtonian fluid
    Zhao, Caidi
    Zhou, Shengfan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (02) : 394 - 425
  • [38] Pullback measure attractors for non-autonomous stochastic lattice systems
    Mi, Shaoyue
    Li, Dingshi
    Zeng, Tianhao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [39] Pullback and uniform exponential attractors for non-autonomous Oregonator systems
    Liu, Na
    Yu, Yang-Yang
    OPEN MATHEMATICS, 2024, 22 (01):
  • [40] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    孙文龙
    黎野平
    Acta Mathematica Scientia, 2018, (04) : 1370 - 1392