A new family of maximum scattered linear sets in PG(1, q6)

被引:21
|
作者
Bartoli, Daniele [1 ]
Zanella, Corrado [2 ]
Zullo, Ferdinando [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Perugia, Italy
[2] Univ Padua, Dipartimento Tecn & Gest Sistemi Ind, Vicenza, Italy
[3] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Caserta, Italy
关键词
Scattered linear set; MRD-code; linearized polynomial; POLYNOMIALS; EQUIVALENCE; NUMBER; ROOTS; FIELD;
D O I
10.26493/1855-3974.2137.7fa
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the example of linear set presented by the last two authors in "Vertex properties of maximum scattered linear sets of PG(1, q(n))" (2019) to a more general family, proving that such linear sets are maximum scattered when q is odd and, apart from a special case, they are new. This solves an open problem posed in "Vertex properties of maximum scattered linear sets of PG(1, q(n))" (2019). As a consequence of Sheekey's results in "A new family of linear maximum rank distance codes" (2016), this family yields to new MRD-codes with parameters (6, 6, q; 5).
引用
收藏
页码:125 / 145
页数:21
相关论文
共 50 条
  • [31] Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)
    L. Storme
    P. Sziklai
    Journal of Algebraic Combinatorics, 2001, 14 : 221 - 228
  • [32] On (q2 + q + 1)-sets of class [1, m, n]2 in PG(3, q)
    Napolitano V.
    Journal of Geometry, 2014, 105 (3) : 449 - 455
  • [33] Sets of class [q+1, 2q+1, 3q+1]3 in PG(4, q)
    Barwick, S. G.
    Jackson, Wen-Ai
    DISCRETE MATHEMATICS, 2020, 343 (09)
  • [34] A Large Family of Maximum Scattered Linear Sets of PG(1,qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{PG}}\,}}(1,q^n)$$\end{document} and Their Associated MRD Codes
    G. Longobardi
    Giuseppe Marino
    Rocco Trombetti
    Yue Zhou
    Combinatorica, 2023, 43 (4) : 681 - 716
  • [35] Double blocking sets of size 3q-1 in PG(2, q)
    Csajbok, Bence
    Heger, Tamas
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 78 : 73 - 89
  • [36] 1/Nc corrections to the hadronic matrix elements of Q6 and Q8 in K→ππ decays -: art. no. 014017
    Hambye, T
    Kohler, GO
    Paschos, EA
    Soldan, PH
    Bardeen, WA
    PHYSICAL REVIEW D, 1998, 58 (01)
  • [37] Elevated Transcription of the Gene QSOX1 Encoding Quiescin Q6 Sulfhydryl Oxidase 1 in Breast Cancer
    Soloviev, Mikhail
    Esteves, Michelle P.
    Amiri, Fakhria
    Crompton, Mark R.
    Rider, Christopher C.
    PLOS ONE, 2013, 8 (02):
  • [38] The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: Thioredoxin and ERV1
    Coppock, DL
    Cina-Poppe, D
    Gilleran, S
    GENOMICS, 1998, 54 (03) : 460 - 468
  • [39] On 1-blocking sets in PG(n, q), n ≥ 3
    Storme, L
    Weiner, Z
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 235 - 251
  • [40] On 1-Blocking Sets in PG(n,q), n ≥ 3
    L. Storme
    Zs. Weiner
    Designs, Codes and Cryptography, 2000, 21 : 235 - 251