Construction of binary linear codes via rational function fields

被引:1
|
作者
Jin, Lingfei [1 ]
Kan, Haibin [1 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Sch Comp Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational function fields; Binary linear codes; Places;
D O I
10.1007/s10623-016-0252-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By employing a certain multiplicative group in the rational function field and places of degree one and two, we present a construction of binary linear codes in this paper. One feature is that the minimum distance of the code is bounded via the Hurwitz genus formula of function fields. It turns out that many optimal and best-known binary linear codes are obtained through our construction.
引用
收藏
页码:633 / 638
页数:6
相关论文
共 50 条
  • [41] Binary linear network codes
    Lu, Hsiao-Feng Francis
    PROCEEDINGS OF THE 2007 IEEE INFORMATION THEORY WORKSHOP ON INFORMATION THEORY FOR WIRELESS NETWORKS, 2007, : 223 - 227
  • [42] CLASS OF LINEAR BINARY CODES
    HASHIM, AA
    CONSTANTINIDES, AG
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1974, 121 (07): : 555 - 558
  • [43] Minimal Binary Linear Codes
    Ding, Cunsheng
    Heng, Ziling
    Zhou, Zhengchun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6536 - 6545
  • [44] On the intersection of binary linear codes
    Dajian Liao
    Zihui Liu
    Journal of Systems Science and Complexity, 2016, 29 : 814 - 824
  • [45] A Subfield-Based Construction of Optimal Linear Codes Over Finite Fields
    Hu, Zhao
    Li, Nian
    Zeng, Xiangyong
    Wang, Lisha
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4408 - 4421
  • [46] The construction of orbit codes based on singular linear space over finite fields
    Gao, You
    Niu, Min-Yao
    Wang, Gang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 245 - 257
  • [47] Diophantine equations defined by binary quadratic forms over rational function fields
    Lv, Chang
    ACTA ARITHMETICA, 2020, 196 (01) : 35 - 51
  • [48] Explicit global function fields over the binary field with many rational places
    Niederreiter, H
    Xing, CP
    ACTA ARITHMETICA, 1996, 75 (04) : 383 - 396
  • [49] CONSTRUCTIONS OF OPTIMAL RANK-METRIC CODES FROM AUTOMORPHISMS OF RATIONAL FUNCTION FIELDS
    Pratihar, Rakhi
    Randrianarisoa, Tovohery Hajatiana
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 262 - 287
  • [50] Optimal binary constant weight codes and affine linear groups over finite fields
    Hou, Xiang-Dong
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1815 - 1838