Fibers of rational maps and Jacobian matrices

被引:0
|
作者
Chardin, Marc [1 ]
Cutkosky, Steven Dale [2 ]
Quang Hoa Tran [3 ]
机构
[1] UPMC, Inst Math Jussieu, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Hue Univ, Univ Educ, 34 Le Loi St, Hue City, Vietnam
关键词
Rational maps; Tangent space; Fibers of rational maps; Jacobian matrices; Blow-up algebras;
D O I
10.1016/j.jalgebra.2019.01.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rational map empty set : P-k(m) ---> P-k(n) is defined by homogeneous polynomials of a common degree d. We establish a linear bound in terms of d for the number of (m - 1)-dimensional fibers of empty set, by using ideals of minors of the Jacobian matrix. In particular, we answer affirmatively Question 11 in [9]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [41] JACOBIAN MATES FOR NON-SINGULAR POLYNOMIAL MAPS IN C-n WITH ONE-DIMENSIONAL FIBERS
    Bustinduy, Alvaro
    Giraldo, Luis
    Mucino-Raymundo, Jesus
    JOURNAL OF SINGULARITIES, 2014, 9 : 27 - 42
  • [42] On the tautological ring of a Jacobian modulo rational equivalence
    Baohua Fu
    Fabien Herbaut
    Geometriae Dedicata, 2007, 129 : 145 - 153
  • [43] On the tautological ring of a Jacobian modulo rational equivalence
    Fu, Baohua
    Herbaut, Fabien
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 145 - 153
  • [44] Rational torsion subgroups of modular Jacobian varieties
    Ren, Yuan
    JOURNAL OF NUMBER THEORY, 2018, 190 : 169 - 186
  • [45] Jacobian Pairs of Two Rational Polynomials are Automorphisms
    Van Chau, Nguyen
    VIETNAM JOURNAL OF MATHEMATICS, 2014, 42 (03) : 401 - 406
  • [46] Jacobian matrices of the motion equations of a system of bodies
    Pogorelov, D. Yu.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2007, 46 (04) : 563 - 577
  • [47] A property of Jacobian matrices and some of its consequences
    Fettweis, A
    Bose, NK
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, PROCEEDINGS, 2002, : 345 - 348
  • [48] Jacobian matrices of Y-seed mutations
    Mizuno, Yuma
    ADVANCES IN APPLIED MATHEMATICS, 2020, 115
  • [49] A property of jacobian matrices and some of its consequences
    Fettweis, A
    Bose, NK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (01): : 153 - 155
  • [50] FORTRAN SUBROUTINES FOR ESTIMATING SPARSE JACOBIAN MATRICES
    COLEMAN, TF
    GARBOW, BS
    MORE, JJ
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (03): : 346 - 347